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SECTION 1

INTRODUCTION

1. INTRODUCTION

1.1. Purpose of Study

This report documents the results to-date of the study

titled Distributed Data Processing (DDP) Software/Hardware

Support Plan in support of the Ballistic Missile Defense (BMD)

Terminal Phase. This study was initiated mid-January 1980 and

its purpose is to identify the capabilitites required by BMD in

order to have high confidence that full scale development (FSD)

of a DDP subsystem can be initiated and completed within a short

(3 to 4 year) time frame. The study is directed toward the

definition of a DDP development facility for BD that will help

achieve the goal of a speedy development.

The BD DDP subsystem referred to in this report is assumed

to be general in nature, i.e., its components may be hardware or

software. Hardware components may be general purpose or

specially developed for this application; they may already exist

or are yet to be developed. Software components may consist of a

combination of high order languages, assembly languages and

microcoded modules.



1.2. Context and Scope

A distributed system is one in which multiple processors,

memory and peripherals are interconnected into an architecture

specially suited to a particular application. Control of

processing functions and computing resources is usually

distributed among a number of processors. Data may also be

distributed. Computing resources in a distributed system may

also be physically situated at geographically distributed

locations. As is expected, the distributed nature of a system

adds much complexity to its structure, and its development.

Distributed systems is a relatively new and untested field.

Many questions about their design, implementation, and

verification remain unanswered. Established methods and tools

are few and not yet well-accepted. The potentials of a

distributed system, however, are promising. By tailoring

distributed components of system architecture to fit the

application, higher processing speed, higher data throughput,

better fault tolerance, modifiability and ease of extension can

be achieved. Previous BMD efforts have therefore led to the

identification of the need for a distributed data processing

subsystem in the Terminal Phase of BMD layered defense system.

The Advanced Data Processing Subsystem Investigations (ADPSI) was

initiated to maintain a state of readiness for the eventual

effective deployment of a distributed data processing subsystem.

The study described in this report is part of the ADPSI

effort. To exhaustively investigate all possible capabilities

suitable for a BMD DDP subsystem development is naturally beyond

the scope of this study. The emphasis will therefore be placed

2
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on tools and techniques that 1) pertain to the distributed nature

of the system, and 2) heLp minimize the development time. It

shouLd be noted here that optimizing development time may

conflict with speed which is another important goal of the BMD

DDP subsystem. In the case of conflicts, a decision needs to be

made based on trade-offs. Special emphasis is placed on system

development and software although hardware acquisition will also

I be addressed.

•Ii
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SECTION 2

DEFINITION OF A DDP SOFTWARE DEVELOPMENT FACILITY

2. DEFINITION OF A DDP SOFTWARE DEVELOPMENT FACILITY

The BMD Data Processing Subsystem is a complex real-time

system that must perform complicated operations on massive

quantities of data within very severe time contraints as well as

survive hostile conditions. The development of such a system is

involved enough without the added constraint of a very stringent

development time frame. A facility that has the capabilities to

help the managers, system designers, software developers,

hardware developers, and system integration/testing personnel

will be of grave importance towards the realization of the timely

development of a system of quality. The following are steps that

should be taken to define an effective development facility.

2.1. Investigations and Analyses

A good facility in support of distributed system development

is an integrated collection of tools that will ease the functions

performed during the development process. It is, therefore,

itself a tool. To define such a facility for a BMD subsystem, it

is necessary to have a good understanding of the BMD application

requirements, the distributed development process itself, and

tools useful to this process.

2.1.1. BSD Environment

Since the software development facility to be defined is to

support the development of a BMD subsystem, a good understanding

4



of the nature of the BMD application is imperative.

2.1.2. DOP Development Process

The development of a distributed system is more involved

than that of a traditional centralized system because of its

complicated structure and the higher degree of freedom in the

choice of a solution architecture. A better understanding of the

major steps involved in the distributed system development

process and the issues pertinent to each step will provide better

groundwork for the definition of a facility to support it.

2.1.3. DDP Development Tools

During the development of distributed systems, the use of

appropriate tools will be very important; and, tools of real

value will necessarily have to be sophisticated in order to

support the complex activities to be performed. An investigation

of tools that may be of use for DDP development will indicate

more clearly the capabilities a development facility must be able

to provide.

2.2. Definition of Capabilities

After the foregoing preliminary investigation, one is then

in a position to define the software development facility in

terms of the capabilities it must provide. Capabilities are

functions performed by the facility to serve the user. For

instance, access to a high order language with certain

characteristics, or an emulator with certain features, are

capabilities a development facility can provide the user.

r o -- 1



2.3. Selection of Specific Items

A capabiLity may be realized in a number of ways. The need

for a high order language with certain characteristics, for

example, may be satisfied by a number of existing languages. An

emulation capability with certain features may be implemented in

a variety of hardware and software choices. Selection from such

alternative implementation approaches must be made so that the

definition of a development facility will be further refined to

contain a list of specific tools to be used.

2.4. Hardware Support

The tools so identified may require the support of special

hardware, and such hardware needs to be explicitly stated to

complete the definition of a development facility.

2.5. Scope and Direction of Current Study

The approach taken by the current study was based on the

above mentioned steps. The work began with a study of the steps

and activities invoLved in the distributed system development

process, including considerations and tradeoffs typical of most

distributed systems (see Section 4). Potential tool categories

useful to DDP systems development were then identified. Their

relevance to DDP development was examined (see Section 5).

BMD requirements have been studied more carefully in other

ADPSI efforts. Hence, the current work does not attempt to

further analyze BMD requirements in detail. Some assumptions

were made about the BMD environment and its DDP subsystem (see

Section 3). These assumptions, together with the studies of
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distributed systems development and tools, were used to define

the needs of development facility capabilities for BMD.

To perform an in-depth study of all tool categories

identified was beyond the efforts allocated to the current study.

Several tool categories that were considered most important were

therefore selected for further study, namely, design languages

for distributed systems, implementation Languages for distributed

systems and their environment, and emulation/simulation

facilitites (see Sections 6, 7, 8, and 9).

Analyses of work covered in Sections 4, 5, 6, 7, 8, and 9

led to the identification of capabilities recommended for

inclusion in a BMD DDP development facility (see Section 10).

The recommended capabilities define a BMD DDP development

facility in terms of the functions it must provide to the user as

explained in Section 2.2. Alternative ways to implement such

capabilities will be discussed in the relevant Sections and,

where possible, specific choices will be recommended.

Intelligent choices in some cases may not be possible within the

scope of this present task because of the Lack of information and

time. After all the specific choices have been made, hardware

support identified, and a plan set up for their acquisition, the

development facility so defined will be ready for installation.

A subsequent report wilt present a plan and schedule for the

orderly acquisition of capabilities identified in this report.

Note that the development facility recommended as a result

of this study is based on investigations into a few of the more

important tools required for distributed systems development. It

is by no means the result of exhaustive examination of all

7



capabilities desirable in a DOP development facility. The

approach taken, however, did have in mind the overall picture of

the totality of other necessary tools. The detailed studies were

performed under the broad framework of the overall requirements

of a development facility. The objective is that as more

detailed investigations are undertaken in the other tool areas

such as testing and management, the definition of the development

facility will be easily expanded to include the other tools to

achieve a more complete definition of an effective development

facility.

8



SECTION 3

8MD ENVIRONMENT

3. OMD ENVIRONMENT

3.1. Assumptions of 8MD Characteristics

The assumptions made about the 81D environment and the 8MD

DOP subsystem requirements are Listed below. These assumptions

are based on information obtained from review meetings,

conversations with ADPSI personnel, and parts (pages 152 to 289)

of a document (Number 17773-10751019C, title unknown) dated 1

JuLy 1976 obtained from McDonneLL Douglas Corporation.

1) The BMD DDP subsystem will be non-geographically

distributed.

2) The design of the radars will be considered as

outside the scope of the DDP subsystem.

3) Development of the DDP subsystem includes

requirement definition, system design,

impLementation of software and hardware

components, testing, and certification.

4) The required response time from beginning to end

of the endo-atmospheric Terminal Phase is 30

seconds. This includes initiation, detection,

tracking, discrimination, and interception.

5) Only digital hardware and software will be

considered as components. Human intervention is

9 4
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ruled out because of response time requirements,

and analog equipment is beyond the scope of this

study.

6) The requirements state that only a specified

number of items have to survive attack.

3.2. BMD Software

There are at least three types of software that need be

developed. One is the application software which is to perform

the specified functions for the BMD DDP subsystem and to

interface with the other parts of the Layered Defense System.

Another type of software is test software which simulates parts

of the system not available for testing purposes. For instance,

a test driver may be necessary to simulate the threat or the

other parts of the Layered Defense System that the DDP subsystem

need to interface with. Or, there may be a need to simulate

radar data for testing. Yet another type of software is

operating system type of software. The reasons that operating

system software has to be developed are:

1) software is needed to control the distributed

hardware resources.

2) software is needed to schedule processing

functions.

3) because super high processing speed is required,

the overhead of general purpose operating systems

is to be avoided in the target system.

10



4) cost of software is small compared to that of

hardware because the hardware cost is repeated for

each defending site in the order of hundreds.

k
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SECTION 4 t
DDP DEVELOPMENT PROCESS

4. DOP DEVELOPMENT PROCESS

This Section reports the results of a brief analysis of the

distributed systems development process. Some special

characteristics of distributed systems are listed below; the

major phases of the development of a distributed system and the

related activities within each phase are then discussed.

4.1. Distributed System Characteristics

The following characteristics typify most distributed

systems, though some characteristics are not unique to

distributed systems alone.

1. Exploitation of special architectures and processing

elements to fit an application is possible. This

means that more than one processing element may be

employed, each with the possibility of its own memory

and peripherals. Or, memory and peripherals may be

shared among several processing elements.

2. Processing functions may be assigned to either

hardware or software.

3. Concurrent functions inherent in the application

implies the need for concurrent processing concepts.

4. The sharing of data and resource among processes or

processors implies the need to guarantee mutual

12



exclusion of access.

5. The scheduLing of processes are more complex.

6. Inter-processor communication is necessary. This is V

usually achieved via shared memory or messages.

7. There are more degrees of freedom in hardware and

software selections.

8. There are more system performance parameters of

interest than a traditional centralized system, and

system performance is much more complex and difficult

to measure.

4.2. Requirements Phase

Several types of requirements are specified for a

distributed system.

- Processing requirements specify the functions or operations

that need to be performed.

- Data requirements specify the amount and nature of data to

be processed and produced. The origin of certain input data

may indirectly specify the location of a node.

- Performance requirements specify the system characteristics

that need be measured and the levels of performance they

must achieve.

- Constraint requirements specify any physical limitations

such as size and weight of the system that must be

satisfied, and any environmental conditions within which the

13 4 RA



system must operate.

The above requirements must be analyzed with regard to

completeness - is any part of the requirements missing, and

are they specified to enough detail for design and

implementation?

consistency - does one part of the requirements contradict

another part?

feasibility - do the requirements specify a system that can

be built?

4.3. Design Phase

The design phase is perhaps the most conceptually complex

phase of any system development. The advent of structured

programming and modern systems engineering practices have shown

that if proper attention, time and effort are given to the design

phase of software development, cost savings will be achieved in

the implementation, testing and maintenance phases of the

software Life cycle. The activities involved in the design phase

of a distributed system are much more involved than those of a

conventional system. The design of a distributed system includes

the design of each component which is a computer system in

itself, and the network of the system which connects the software

and hardware component parts into a functional whole.

The design phase of distributed systems development involves

several activities.

14



4.3.1. ELaboration

This activity includes the elaboration of requirements into

higher degrees of detail, the assignment of performance,

feasibility assessment, and verification planning.

4.3.2. Partitioning

The partitioning activity logically groups processing

functions by commonality C~ariani 793. It also defines the

interfaces among the logical groups. Commonality criteria vary.

One example is the nature of the processing functions.

Processiig functions performing similar operations may be

Logically grouped together. Or, processing functions that are

parts of the same task as seen from a higher Level of system

description may also be grouped together. Access of common data

is another example of a commonality criterion for partitioning.

4.3.3. Allocation

The partitioning function above does not indicate how the

logical groups are to be assigned to computing resources.

Logical groups of processing functions that access common data,

for instance, may be assigned to the same processing element for

ease of data access. However, they may also be deliberately

allocated to separate processing devices to maximize

paraLlellism. The choice in large part depends on the guidelines

of the overall objectives of the system.

The partitioning and allocation activities in combination

assign processing requirements to computing resources EMariani

793.

15

-L 2'~



4.3.4. Tradeoff Analyses

The above activities essentially result in the definition of

processing nodes. These nodes can be connected together in a

variety of ways. Each topological configuration will have its

own characteristics in behavior, performance, and its need for

hardware support and software control. The problem can be stated

in the following fashion [Boorstyn 75].

Given: nodes (for each candidate partition)

processing required

traffic

performance requi red

constraints

Find: topology

Links - internode communication

Typical Objective Functions:

capacity thruput (maximize)

response time (minimize)

cost (minimize)

(initial, development,

and maintenance)

Other Performance Considerations:

reliability/fault tolerance

modifiability

absence of deadlocks

ease of verification

expansion possibilities

16



maintenance

non-technical considerations

operational personneL required

Tradeoff Considerations:

Many degrees of freedom in distribution of

control - communication, scheduling

physical data base - speed, data thruput, coherency

memory at nodes - mutual exclusion, speed

Assignment of capacity to various nodes to

fit architecture to processing needs

Choice of hardware capacity and processors

Means of communication among processors

1. shared memory - mutual exclusion of access

2. messages - protocoLs

- traffic Load and pattern

- routing in case of failure

synchronization

Tradeoff between hardware and software

freedom of assigning processing function to HW or SW

each topological configuration implies additional

software needs such as

- memory required

- complexity (affects cost, development time,

and quality)

17
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4.3.5. Verification against requirements

After tradeoff analyses have been performed, the predicted

attributes of the candidate system have to be compared against

the stated specifications to see if the performance requirements

will be satisfied. If more than one candidate topology satisfies

the stated requirements, then they will be evaluated according to

cost, development time, or other pertinent attributes for final

selection. If a candidate architecture does not satisfy the

stated performance, then alternate topologies will be considered,

or the application will be re-partitioned to arrive at an

acceptable solution. The activities of elaboration,

partitioning, allocation, and tradeoff analyses are therefore

iterated until a satisfactory solution emerges.

The need for iteration is also brought about by the fact

that alL these design activities need be performed for successive

Levels of design. After a solution architecture is designed to a

certain level of detail, analyzed to ensure fulfillment of

specifications, it is then expanded into a more detailed design

by elaborating on each component part.

The distributed nature of the solution makes it possible to

further elaborate each component part independently of one

another. Concurrent design of various portions of the system

mostly likely takes place in the develpment of a distributed

system. One obvious example is that after the overall network of

nodes and their interconnections are specified, further design of

each node can take place concurrently. This also applies to the

concurrent design of hardware and software modules as Long as at

the verification step the predicted performance of the entire

19
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system is matched against specified requirements.

4.3.6. Two Design Approaches

Two design approaches to distributed design worthy of note

are mentioned here. One noticeable characteristic common to both

of these approaches is that many activities take place in

distributed system development before hardware and software are

even identified. This confirms the previous discussions on the

complex nature of tradeoff considerations in distributed design.

The indication then is that the design phase of distributed

development is more prolonged, more important, and deserves much

attention.

Total System Design Methodology

Though the Total Systems Design Methodology (TSDM) EClark 79]

concept, developed at Rome Air Development Center (RADC), was

originally intended to be applied in the design of general

systems, consisting of a combination of hardware, software,

firmware, or manual components, it is very applicable in the

realm of distributed systems.

It stresses initial functional conceptualization of a system

regardless of whether these functions will eventually be

implemented in hardware, software, firmware, or in a manual

procedure. It also emphasizes analysis, iteration and early

feedback as important means of coping with the complexity of

concurrent system design. In fact, TSDM isolates the high level

design activities to form a new step called Decomposition, whose

function is to provide the transition from a set of functional

20
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requirements definitions to the design of a system in terms of

hardware and software components. In other words, Decomposition

allocates abstract functional requirements to physical resources.

Air Force procurement procedures have traditionally

separated computer system requirements at the start into software

and hardware components to accomodate Long leadtimes in hardware

procurement, often at the sacrifice of software quality or the

integrity of the entire system. TSDM was proposed to correct the

error in this systems design philosophy, and advocates a

"software first" concept. The benefits of postponing

hardware/software implementation decisions are maximized, and the

ultimate solution, as represented in the design of the system, is

one that is natural to the problem it addresses.

Simulation is used heavily in TSDM, both at the requirements

definition level as well as at the more detailed levels of design

to ensure integrity of the whole system.

Baseline Approach

A distributed design technique was developed at TRW as the

result of analysis of the distributed design process [Mariani

793. It advocates four activities - Analysis, Partitioning,

ALlocation, and Synthesis - to be applied at four different

Levels of design, viz., the Subsystem, Nodal, Computer Systems,

and Hardware/Software Levels. Analysis consists of elaboration,

requirements identification, performance assignment, feasibility

assessment, and verification. Partitioning identifies

commonalities of processing entities and groups together

processing requirements. Allocation relates characteristics of

21
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partitions to computing resources. Synthesis considers

interprocess Links, data base, control, topology, protocol,

performance evaluation and verification.

The Partitioning and Allocation activities together allocate

processing requirements to computing resources and are therefore

similar to the Decomposition step in TSDM.

The baseline approach advocates that the four Levels of

design fit into the overall phases of distributed systems

development as follows:

REQUIREMENTS PHASE

DDP Requirements

PRELIMINARY DESIGN

Distributed Architecture Design

Network Design

Node Design

Computer System Design

Integrated Hardware-software Design

DETAILED DESIGN

INTEGRATION AND TEST

Implementation and Test

Integration and Test

OPERATION AND MAINTENANCE

,22



4.4. Implementation Phase

The design phase is ended when the target system is

specified in terms of hardware and software components and their

interconnections; and each hardware software component is

specified to sufficient detail for implementation. Acquisition

of the hardware and software parts can then take place. Detailed

design of each component part takes place within this phase.

Implementation of these component parts can take place

concurrently, i.e., hardware acquisition and software acquisition

can occur simultaneously; acquisition of different processors can

also overlap, as does the acquisition of different software

moduLes.

From the sheer number of independently identifiable subparts

of a system, a distributed system offers more opportunities for

concurrent acquisition than is possible in a centralized system.

Unless the entire system is developed by one contractor, the

coordination required by the procurement procedure will be

horrendous. A systematic method of procurement should be mapped

out as procurement guidelines to ease the managerial functions of

the procurement. On the other hand, three arguments stand

against the contracting of the entire system to one vendor. One

is that it may be desirable or even necessary to acquire hardware

items from a different vendor than one that can provide software

items. Second is that the entire system may be too large for one

vendor. Third is that the managerial function is pushed back on

the shoulders of the vendor although in this case coordination

across contracts is not necessary.
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4.5. Integration and Testing Phase

Testing of each component part must necessarily take place

during the implementation phase. These parts must then be

integrated, hardware and software alike, together so that the

entire system can be tested as a whole. Granted that in the

development of a distributed system, not only can design and

implementation of various nodes or subsystems take place

concurrently, testing of individual nodes and subsystems can also

be done in similar fashion. In the interest of compressing full

scale development time, testing and validation should be done in

a stepwise manner as is highly possible in a distributed system.

Portions of the distributed system should be tested as they

become available and the entire system can be validated at

various Levels. This will simplify the final validation process

at the end of full scale development.

4.6. Verification and Certification Phase

This is the phase in which the procuring agency verifies the

completed target system and certifies its acceptance. To do

this, field testing, simulation and other verification tools

might be used.

4.7. OverLapping Phases

In the development of a centralized system, the above

discussed phases are more clear-cut. In distributed system

development, if the opportunities for concurrent development are

fully exploited, some of these phases may overlap. One node or

subsystem may be in the design phase while another may be in the

process of being implemented and tested.
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SECTION 5

DDP DEVELOPMENT TOOL CATEGORIES

5. DDP DEVELOPMENT TOOL CATEGORIES

This Section reports the results of a task to identify toots

and techniques that will best support the activities and

attributes of a distributed system as outlined in the preceding

Section. The emphasis is on toots that will help shorten the

development time. Tools in this context include any methods,

concepts, languages, hardware, and automated software applicable

to decreasing the Length of the development process. The reasons

for the usefulness of each identified category will be given.

5.1. Systems Design Tools

As the previous Section has indicated, the distributed

system development process is characterized by the complex design

trade-offs and the numerous activities that take place before

hardware/software components are identified. For this reason,

any tool that will facilitate the design of a distributed system

is bound to help shorten the time and effort for the total

development of the system.

5.1.1. Design Techniques

Design techniques proposed to support distributed systems

are few. The Baseline Approach discussed in Section 4.3.6 is one

example. Other design techniques, however, that are intended for

the design of systems in general or for the high-level design of

software can be 'borrowed' for application in distributed system
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development. An example is the Total System Design Methodology,

also discussed in Section 4.3.6. Other examples are briefly

Listed below.

Levels of Abstraction

The concept of levels of abstraction was defined by Dijkstra

[Dijkstra 683 to cope with the inherent complexity of software

systems. This technique reduces the overall system logic to

manageable parts and provides a conceptual framework for

achieving a clear and logical design. The entire system is

viewed as a hierarchy of Levels, each supporting an important

abstraction. Higher levels may appeal to lower levels to perform

tasks; lower Levels, however, are not aware of the existence of

higher levels. Each level of abstraction is composed of one or

more related functions that share common resources. The external

functions may be referenced by higher levels while the internal

ones are strictly used within the level itself.

This concept was first applied in the development of the

'THE' multiprogramming system by Dijkstra. Since then, its usage

has been widespread and hardly a venture in the application of

newer software engineering techniques goes by without the

inclusion of levels of abstraction.

Top-down Design

Top-down design CMills 71, Yourdon 75) refers to a method of

design by top-down expansion, beginning with a simple expression

of the target system describing the dependencies among major

components, each of which is an abstraction of a process or

resource. These components are in turn decomposed into further

abstractions one level at a time until the whole system is
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defined. Interfaces among these components are explicitly

defined as each component is recognized. These interfaces

include data connections and the services provided.

Top-down design makes use of the concept of Levels of

abstraction, but is not identical to it. The former stipuLates a

direction of arriving at the design of a system, while the latter

does not as long as the resulting design can be conceived in

terms of abstractions.

Reactions to top-down design are generally favorable,

although it is recognized that the design pocess is ultimately

iterative in nature. Elshoff, in reporting his experiences with

top-down design tElshoff 74), found some difficulty in adhering

to strictly top-down design in the identification of common K
utility routines used throughout the system. He tended to

identify them first, which would be contrary to an absolute top-

down approach. Dijkstra also pointed out a similar issue in his

discussions of the design of 'THE' system. He suggested that

sometimes knowledge of the lower levels, such as how a machine

works, does help a designer make the correct decisions at the

higher levels. It would eliminate some iterations. In practice,

therefore, some iteration is almost unavoidable if a good design

is to be achieved.

Parnas' Modularity

In conventional modularization, the criterion used in

decomposing a complex function into modules is to make each major

step in the process a module. Parnas' criterion for

decomposition tParnas 723 is "information hiding" or the "black-

box approach". The modules no Longer correspond to steps in the
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processing. Each module is characterized by its knowledge of a

design decision unknown to the rest of the system. The interface

of each module is chosen to reveal as little as possible about

its internal implementation.

Stepwise Refinement

Program development by Stepwise Refinement is a method

proposed by Wirth EWirth 71) in which the creative activity of

programming, as distinguished from coding, is considered as a

sequence of design decisions. Each step is a refinement of the

previous step to bring about the decomposition of tasks into

subtasks and of data into data structures. Each refinement thus

implies a series of design decisions; program and data

specifications are refined in parallel.

Structured Design

The underlying consideration of. Constantine's structured

design technique [Stevens 74, Constantine 673 is to isolate more

simple independent modules with minimal connections among them.

The result is that these modules are not only easier to

comprehend, easier to implement, less error-prone, but also less

repetitive because they are more likely to be reusable without

recoding, thus avoiding duplicate code.

In EStevens 74) the authors discuss the strength of

association among modules, cohesiveness, and binding. They

advocate that design be performed at three levels: system,

program and module. There are trade-offs involved in structured

design. "The overhead involved in writing many simple modules is

in the execution time and memory space used by a particular

language to execute the call. The designer should realize the
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adverse effect on maintenance and debugging that may result from

striving just for minimum execution time and/or memory." [Stevens

74). According to Stevens et al, depending on the actual

overhead of the language being used, it is also possible that a

structured design can result in less execution and/or memory

overhead rather than more because of the tightness of the design,

better organization in general and less duplicate code.

Data Abstraction

Data abstraction deals with the ability to represent data in

abstract form regardless of the internal representation or

implementation on the machine. In the same way that successive

decomposition of a complex problem into abstract functions

simplifies the problem, the successive refinement of the data

involved also simplifies the problem to be solved. One should be

able to represent data in an abstract form that is most natural

to the original problem. Then at each design step the data is

made more specific until finally it is defined in terms of data

structures offered in the programming language of choice.

Hand in hand with the idea of abstraction is that of data

encapsulation which specifies that as a datum is defined, so

should the operations that are allowed on it;

Early efforts in the data abstraction area were made by

Dijkstra EDahL 72), Wirth [Wirth 71). Liskov and Zilles ELiskov

74). Wulf EBentley 79). and attendees of a conference on Data

Abstraction, Definition and Structure [Proc 74).

Most of the modern programming languages such as Pascal,

Modula, Ada, Concurrent Pascal, allow user-defined data types to
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support data abstraction.

Programming-in-the-Large vs Programming-in-the-Small

DeRemer and Kron [DeRemer 763 advocate distinguishing the

activity of global detail from that of detailed design. They

proposed a Module Interconnection Language (MIL) for

programming-in-the-large to express the overall program structure

of a Large system in a concise, precise and checkable form. A

MIL may be regarded as a higher-level language capable of

resolving the interconnectivity of program modules much the same

way a 'linker' prepares for 'loading' a program. One consequence

of this approach is the need for a moe complex compiling system.

Feedback on a crude version of this compiler indicated that its

benefits more than compensate its cost.

5.1.2. Mathematical Analysis Techniques

Formal mathematical disciplines such as queuing theory,

statistical analysis, convex programming, projective geometry and

permutation analysis have been applied to network design. These

disciplines are all applicable to the network design of

distributed systems to predict and evaluate proposed topologies.

5.1.3. Simulation

Simulation has been used in a wide variety of areas. In the

realm of distributed systems design, simulation is a useful tool

to model the real-time behavior of asynchronous processes within

the system.
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5.1.4. Design Languages and Analyzers

Design languages and their accompanying tools will be

treated in better detail in Section 6.

5.1.5. Design Automation

Two tools, proposed by TRW [TRW 79), are aimed at automating

the partitioning and allocation steps of the design process.

They are called the Partitioning Model and the Allocation Model

respectively, and are designed for operation on the VAX. The

status, performance, and guidelines used for these tools are not

clear to us at this point.

5.2. Software Development

5.2.1. Concurrent Languages

To support DOP naturally, with alt its inherent concurrent

processes, a language capable of expressing such concurrency will

greatly enhance the ease of coding. The importance of a

concurrent language will be treated in greater depth in Section

7.

5.2.2. Programming Support Environment

This category includes programming aids such as editors,

debugging aids, program library management aids. They will be

discussed in Section 8.

5.2.3. Software Engineering Techniques

Most of the design techniques discussed in Section 5.1.1.

are applicable to detailed design and coding and will not be
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repeated here.

The virtues of structured programming need not be extolled

once more. Suffice it to say that much has been learned from its

introduction into the software field and the effect it has had on

the design, implementation, testing, verification, and

maintenance of software. It also had affected the design of new

programming languages.

5.2.4. Compiler-writing TooLs

Since designers of a distributed system will always be on

the lookout for cost-effective processors that will best fit the

application at hand, the chances of selecting a reLativeLy new

processor are high. The code generation portion of existing

compilers will have to be modified so that the chosen

implementation language can be compiled into machine code for

that processor. To this end, compiler writing tools are

important. [Dunbar 75, Feltman 76, TRW 73] are examples of work

on compiler writers.

The YACC (Yet Another Compiler-Compiler) project at Bell

Laboratories provides a general tool for controlling the input to

a computer program. The YACC user describes the structures of

the input, together with code which is invoked when each

structure is recognized. One version is coded in the C

programming language and another version is in Ratfor. YACC is

implemented in C under the UNIX operating system. It is claimed

to be reasonably portable.

The original purpose of YACC was to help as a design tool

for the front end of compilers, i.e. lexical scanning, parsing.
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It has been applied to other problems with success. Basically

YACC is used to build parsers that interact with a lexical

analyzer and output phases of a program. YACC handles LALR(1)

grammars with disambiguating rules.

The grammar input is in the form of productions. Associated

with each production is an action. An action is implemented by a

subroutine call to a C language routine with parameters from the

production. Successful uses of YACC have been applied in the

construction of a C compiler for the Honeywell 6000, a system for

typesetting mathematical equations, low level implementation

language for the PDP-11, and APL and BASIC compilers to run under

UNIX. Another project worthy of review is the PQCC (Production

Quality Compiler-Compiler) project at Carnegie-Mellon University,

although still at the development stage. The goal of the project

is to create a truly automatic compiler writing system that

generates quality code. Emphasis is placed on 1). production of

optimized code by applying welL-understood optimization

techniques; 2). friendliness to the user; and 3). a reduction in

production and maintenance costs and time for language

implementation and support. The goal is to produce a compiler

for a given language on a given machine in three man-months.

The phases of PQCC are developed to perform some particular

task of optimization on the TCOL representation of the source

program. The phases will run serially and are designed to be

independent of each other. TCOL is the univeral intermediate

representation of the source program. An abstract tree-structured

representation will be passed from phase to phase. The various

transformations performed by each phase will not alter the format

L 33



of the TCOL representation but only the structure of the tree

that represents the program.

The PQCC has some well defined limitations in order to keep

the project within reasonable bounds of feasibility. It only

supports algebraic Languages such as Algol, PL/I, Fortran, Bliss,

C, Pascal and Ada. It does not support languages with data

structures such as strings in Snobol, processing in LISP, array

processing in APL. Target machines are limited to one address

(PDP-8, NOVA), two address (PDP-11), three address (VAX), and

general register (POP-lO, 1103, IBM/370) machines. It does not

support pure stack machines and other highly specialized

architectures.

5.3. Hardware Development

The availability of hardware development tools will enhance

the possiblities of developing special-purpose processors to

tailor the architecture to the application. Such tools include

hardware descriptive languages, well surveyed and summarized in

[Shiva 79, Dudani 79], and being standardized in the CONLAN

effort.

Included in this category also are Logical design tools,

physical design tools, and analyses tools. It is not the

intention of this study to cover existing hardware development

tools, but will cite one example. The SCALD system [McWilliams

78a, McWilliams 78b, McWilliams 78c]. used in the development of

the Lawrence Livermore Laboratory Si computer, consists of a

computer-aided Logic design subsystem, a physical design

subsystem, and a timing verifier which is vital to the SI
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development because of the ECL components used. Some SCALD

software requires a Large quantity of memory, making it

impossible to operate on many machines. It has been successfully

used on the Mark 1 version of the S processor to help design and

develop Mark II.

5.4. Management Tools

At the systems level, management tools are important to

distributed systems design to help manage the concurrent

development of hardware and software components, and the

concurrent development of individual hardware and software parts.

The expected difficulties in managing the procurement of these 1

system components as discussed in Section 4 will be alleviated to

some degree with the use of good management tools.

At the software development level, good management tools

have been found to be necessary and useful. One of the

experiences learned from the development of the HXDP distributed

system is that the software management was much more difficult

than the hardware management EJensen 80]. The fact that they had

good people who are experienced in the management of Large

software development attributed much to their successs.

Several techniques used in software development management

that have shown documented results are given here.

Chief Programmer Team

Chief programmer team is a method of organizing a

programming team around a skilled and experienced programmer who

performs critical parts of the development work. He specifies

and integrates various parts of the system to be built. Each
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part can then be coded and checked out by other members of the

team. In this way, the talent of the chief programmer is

utilized fully; he also has the perspective of the whole sub-

portion of the system being developed.

Favorable results of the application of this technique is

reported in [Baker 723.

Code Reading

Weinberg discusses 'egoless programming' in his book titled

Psychology of Programming [Weinberg 71). His idea is that

programmers should not mind the discovery of their errors by

other people. Reading one another's code is beneficial for

several reasons: one has a more objective viewpoint in reading

code written by another person because one usually does not make

the same assumptions as the author; emotional fluctuations of one

person can be normalized if the code he wrote on a bad day is

checked by another person.

This technique helped uncover a fair amount of logic errors

early (before the code is tested) in an experiment ECorrigan 753

to evaluate software project management techniques. Syntax

errors are caught by compilers easily and were found not to worth

the effort of human detection. Logic errors, on the contrary,

were missed by compilers and should be the errors to look for in

code reading.

Structured Walk Throughs

The idea of structured walk throughs is similar to that of

code reading with the exception that it can also apply to design.

Review meetings are held during which one team member will
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explain his design or code. Team members will raise questions

and check the design or the logic of the code. In the case of

review of design, documentation of design is necessary, such as

design Languages.

Favorable experiences are reported in [Barrett 76).

5.5. Testing and Validation

In a distributed system, because of the parallel development

efforts, testing or validation can be performed in a stepwise

fashion in the interest of shortening development time. Portions

of the system can be validated as they become available and the

entire system is validated at various levels of detail.

Proof uf correctness ELondon 75) is a technique worth

monitoring though its practicality in large systems has yet to be

demonstrated. Perhaps critical portions of programs can be

verified by adding assertions to be proved.

Symbolic execution is another testing technique used on

conventional systems. It operates on a set of input values in

one execution. If the domain of inputs and range of outputs are

properly considered, symbolic execution can give a high level of

confidence that a program is correct for a large set of inputs

CHowden 76, MiLler 75, King 75).

Simulation is also used heavily for testing purposes (see

Section 9).
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5.6. Specification and Documentation

The stepwise validation technique mentioned above can be

realized fully only if good specification Languages exist to

represent the system at all Levels of design and development.

Such specification will also serve as documentation aid for

communication among various branches of development as well as

for the management of concurrent development efforts.

5.7. Emulation

Emulation is necessary to promote the development of

software modules before a processor is available. It will be

treated in Section 9.

5.8. Simulation

Simulation has been used in a variety of areas. In the

realm of distributed systems design, it is a useful tool in

modelling the real-time behavior of asynchronous processes within

the system. Simulation can also be used in testing by simulating

the portions of the environment within which the system will

operate, e.g. simulation of threat. This topic will also be

covered in Section 9.

5.9. Summary

The tool categories discussed above are summarized in a

chart showing their aplicability to the various phases of tLe

system Life cycle (see Fig. 3). The Operations and Maintenance

Phase, not included in previous discussions on the distributed

systems development process, is included in the chart for the

sake of completeness.
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Design Techniques x x x x
Math. Anal. Techniques X X X
Design Languages X X X X X
Design Analyzers X X x x
Design Automation x
Simulation

Software Development
Concurrent Languages x x
Debugging Aids
Programming Aids
Program Library Mgmt. X X X
Software Engineering Tech. X X X x x
Compiler-writing Tools x

Hardware Development
Logical Design Tools X X
Physical Design Tools X X
Analyses Tools X X x
Hardware Descriptive X X X x

Languages

Emulation X X X
SimuLation x x x x x
Testing x x
Manaqement x x x x x x
Verification & x x X X X X

Validation
Specification & x x x x x x

Documentation

Figure 2. DDP Tools Summary
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SECTION 6

DESIGN LANGUAGE AND ANALYZERS

6. DESIGN LANGUAGE AND ANALYZERS

A design Language for distributed systems is a form of

representation necessary to capture the design of a distributed

system as it evolves so that the current status of the design is

refLected in tangible form. Such a design Language can serve

many purposes.

6.1. Purpose of a Design Language

6.1.1. To Represent Design

The design of a system begins with specified requirements,

goes through iterations of elaboration and trade-offs, and

ultimately matches functions to be performed onto computing

resources. In distributed systems, as pointed out in Section 4,

many activities take place before components are identified to be

hardware or software. For this reason, the design of a system

should begin with abstract functions to be performed, and

gradually as it evolves, the design will take on a more specific

form that incorporates implementation decisions of the abstract

functions. For a design language to be useful throughout the

design phases, its scope must encompass the abstract as well as

the concrete, and representation of a system should progress from

general functional concepts on a global scale through varying

Levels of abstraction all the way to detailed specification of

each module and data structure until the whole system is well

defined.
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One of the most important concepts in the design of a

distributed system is the concept of concurrency. One reason for

implementing an application as a distributed system is that of

reliability and fault tolerance. Another great impetus is that

by exploiting concurrent features natural to the application, a

number of processors can perform tasks concurrently to provide a

higher performance in speed. Unless an application has

absolutely no opportunity for any concurrent processing at any

level, which is somewhat difficult to imagine, there will be a

need for concurrent concepts or the full advantages of

distributed systems will not be available.

The concepts necessary to support concurrency and the design

of concurrent systems will now be addressed.

Concurrency at the Functional Level

One of the main propelling forces for the growing importance

of concurrent processing is the increasing sophistication of

computer applications, especially those in the military signal-

processing, command and control real-time environment.

Traditionally, concurrent processing was implemented in operating

systems so that resources such as the central processing unit

(CPU) and asynchronous peripheral I/0 devices could be

efficiently utilized, perhaps among multiple users. As computers

are used to help solve a wider and more complex set of problems,

many of the application areas have within them innate concepts of

concurrent processes. One instance of such concurrency occurs as

a result of geopgraphically distributed nodes. Processing

functions at these nodes take place independently of one another.
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Another instance is the inherent nature of the problem in which

Jdifferent processes take place independently of one another in

time, but may operate on common data items, regardless of

geographical distribution. Thirdly, the algorithm used in the

processing may be naturally decomposable into parallel

operations, especiatly if such decomposition is implementable on

a multiple-processor architecture to improve the ultimate speed

of the system. A typical example is the Fast Fourier Transform

algorithm often used in signal processing (see Appendix A). Such

concurrency has contributed to the recent awareness of

distributed systems as a solution to many problems.

Military systems, especially real-time systems such as the

BMD Layered Defense System, typically contain alt three types of

concurrency. For instance, airborne components, sensors such as

radar, weapons systems, and ground stations need to communicate

with one another. The functions each component performs may be

different and can continue independently as long as

synchronization and intercommunication are coordinated. The

response time requirements for these systems are so stringent

that a distributed design for ultimate implementation on

distributed architecture may be the only solution to achieving

the performance desired.

Concurrency at the Architecture Level

Another factor that heightened the importance of concurrent

processing is the advance in Integrated Circuit (IC) technology.

With the advent of VLSI and the proposed VHSIC (Very High Speed

Integrated Circuit) technology, cost-effective distributed
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architectures with components as complicated as a general-purpose

computer are within reach. This means that the concurrent'

functions inherent in an application can be mapped onto different

pieces of concurrently operating hardware. This is best achieved

if the natural concurrencies are retained for as Long as possible

throughout the design process. Any time such concurrencies are

eliminated indicates that a design decision has been made.

In summary, the need for concurrency concepts stems from

abstract concepts inherent in complex problems, and means of

controlling multiple devices in a distributed solution

architecture.

Concurrency Implications on Design

Next, we will consider the implications of concurrent

processing on systems design.

Concurrent systems deal with many concepts not present in

sequential systems. First and foremost is the concept of

concurrent processes. Sequential systems deal with processes

that take place one at a time, one after the other. Concurrent

systems have to deal with processes that take place

simultaneously, each of which is triggered by a particular set of

events, exists for a perhaps unpredictable length of time, and is

terminated by another set of events. Secondly concurrent

processing involves the concept of inter-process communication

since concurrent processes may need to communicate with one

another, usually in the form of messages or shared memory.

Finally, to describe the behavior of and relationship among these

concurrent processes, to ensure that not more than one process
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accesses a common resource at the same time, and to facilitate

the correct sending and receiving of messages, concurrent systems

design has to take into account concepts of inter-process

synchronization. This is usually achieved through concepts such

as busy-waits, memory interLocks, and semaphores that may be

implemented in a variety of ways, incLuding hardware interrupts

and software control.

The concepts of concurrent processes, their communication

and synchronization, need be dealt with at more than one level of

systems design. At the higher levels, processes represent

abstract functions to be performed regardless of implementation.

Inter-process communication can be thought of as the data flow

among processes, and inter-process synchronization as abstract

methods of controlling the scheduling of processes and shared

resources. At the lower, more specific levels of design,

processes represent software modules or actual processors.

Inter-process communication is implemented by shared memory or

messages sent and received by processes. Inter-process

synchronization may reflect implementation decisions that have

selected the physical means of control and synchronization.

The presence of interdependent concurrent processes makes it

necessary to examine aspects of a system such as the absence of

deadlocks, i.e., when one or more processes are waiting for

something that will not occur. Deadlocks typically occur when

processes compete for common data in such a way that the data

cannot be released to any process. Processes requesting

resources must also be starvation-free. Other aspects of a

concurrent system that are of interest include port-to-port
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response times, throughput, time-delays, reliability, fault

tolerance. The identification of such performance parameters is

not an easy task. The acceptance level for some of these

parameters is usually specified, and a designer has to ensure

that the system's performance meets the specified requirements

throughout the various levels of design. In concurrent systems

design, a designer also has to consider tradeoffs among

performance parameters of alternate topologies. Based on these

tradeoffs, he can then select the topology that best satisfies

the specified functional and performance requirements for the

tasks to which a system is to be applied.

Thus, concurrent systems design is much more complex than

the design of sequential systems. New concepts are involved, and

a larger number of system aspects need be checked out and

verified against requirements.

6.1.2. To Record Design Descisions

Too often, design decisions made are implicitly embedded.

Decisions are made unconsciously, and other alternatives, left.

unrecorded, are lost. A good design language will hopefully

record some design decisions more explicitly, especially when it

is used conscientiously at various stages throughout the gradual

evolvement of a design.

6.1.3. For Communication Among Design Team

In distributed systems design, when many concurrent

development efforts take place, a design language can serve as a

communication tool among the designers by representing the

current design in tangible form.

45



The design, formally represented, can also be a means of

communication between requirement definers and system designers

in the verification of design against requirements. Requirement

definers can be an acquiring agency or a user of the target

system, or both.

On the other side of the spectrum, design languages can also

serve as a means of communication between designers and coders,

the ultimate form of the design being the specification for

coding of software or the specifications for the

development/acquisition of hardware.

Design languages also facilitate the generation of test

plans by communicating the design of the system to personnel

responsible for testing the ultimate system.

6.1.4. For Better Management

Section 5 has already pointed out the importance of

management tools in the development of a distributed system to

integrate concurrent activities. The use of a design language

will only facilitate the managerial function by making the

progress and status of the design apparent at any time.

6.1.5. For Testing and Validation

Concurrent activities in the development of distributed

systems allow for the stepwise testing and validation of the

system as discussed in Section 5. For this to be realized

effectively, there must be some way of specifying the design at

any stage so that validation between steps can take place. The

use of a design language will serve that end.
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If the design at any stage is captured by a formal Language,

then testing strategies can be designed long before the system is

being implemented to take into account the different possible

paths and different states of a system.

6.1.6. To Support Design Philosophies

There is usually an underlying philosophy in any Language,

especially one that deals in abstract concepts. One hears of the

'world-view' of Languages such as simulation Languages, and

Learns how easy or difficult it is to represent some concept in a

certain Language [Atki8O].

A design language can offer a designer the power of

expression of certain concepts necessary in a certain design

philosophy. Or, it can be used to enforce certain rules, built

into the Language, to ensure adherence to standard design

guidelines. The set of constructs available in a language is

significant both in the capabilities provided and in the

capabilities not provided. More specifically, design languages

can be used to: (1) promote certain concepts in software design,

such as viewing a system in varying levels of abstraction; (2)

enforce certain approaches such as designing a system in a top-

down manner; and (3) ensure that the ultimate design obeys

certain rules that, for example, apply to the control of modules

over one another and the scope of data structures.

The purposes of such enforcement and expressive power are

usually to allow for better management of the complexity of a

system and to promote correctness in the design.
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I
6.1.7. To Drive Automatic ToolsI
The formal specification of system design in language form

provides a firm basis for the analyses of systems so specified.

A parser can be built to transform the specified design into some

transportable machine-readable intermediate form, such as a

parsed tree whose structure has already been analyzed. Automatic

tools can then use that information to further analyze, report

on, simulate, or validate various aspects of the proposed system.

A prime example of such a tool is a simulator that examines the

real-time events of the system.
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6.2. Selection Criteria For a Design Language

The design of a language is strongly driven by the purpose

for which it is intended, by whom it will be used, how it is to

be used, and with what other tools it will be used. By defining

these goals, one sets the context of the language and the scope

of its operating environment. Each one of these relationships

and their effect on the choice of a distributed design language

were examined and will be discussed in subsequent subsections.

It should be noted here, however, that these contributing factors

are inter-related. The type of information a simulator is

expected to provide may require that the language be able to

express additional concepts otherwise not demanded by the

description of a concurrent system. How a language is to be used

in a design methodology will in turn affect the type of automated

tools to be built and what abstractions a language has to deal

with. Furthermore, the prerequisite features of a Language may

make it easy for a tool to extract certain information and

therefore may affect the design and usefulness of a simulator

because of the easy access of such information.

6.2.1. Language and Abstract Concepts

The primary function of a language is in its ability to

express abstract concepts and to model real entities. A language

is usually used as a communication tool, whether it be man-to-

man, man-to-machine, or machine-to-machine. A language, in its

purest sense, consists of a set of constructs or features, with a

specified syntactic structure and semantic meaning. It is to be

distinguished from software programs that might use it, e.g.

simulators, compilers, interpreters. A language is also to be
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distinguished from its implementation. The same programming

Language, for instance, can be implemented in more than one way.

It can be compiled into machine code, or it can be executed by

interpretation. The same language construct can also be

translated into different sets of the target code.

A design language for distributed systems must be able to

describe a concurrent system. It must be able to express the

concepts of concurrent processing discussed in Section 6.1.1, and

any additional features that may prove necessary as our

understanding of concurrent processing grows. It must be able to

express components of a concurrent system, its topological

structure, its time-dependencies, its data dependencies and so

on.

It may also need to express concepts necessitated by its

other design goals since contributing factors are inter-related

as was mentioned above.

6.2.2. Language and Automated Tool Support

A language, as a representation of abstract concepts and a

model of real components, is passive, while an automated tool,

being a software module that uses the information in the

language, is an active quantity.

If a design language is to be used in conjunction with a

simulator, as is the case for the proposed study, a good

understanding of what information the simulator needs to provide

is very critical input to the design of the language.

Conversely, the simulator can also make the best of information

easily accessibLe from the features of the design Language. The
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requirement for the design Language under consideration is that

it be able to drive a critical-event and time-sliced simulation.

6.2.3. Language and Design Philosophy

As modern software engineering techniques such as structured

programming emerged on the horizon some years ago, so did a

proliferation of new Languages or extensions to old ones to ease

the application of such techniques. The reason for this is that

many of the new techniques embody new concepts or approaches to

software development, and it was discovered that the old

notations no Longer suffice. At times they were actually

hindrances to the application of good techniques. New notations

were therefore required to reflect the new concepts involved. In

the case of structured programming, some features, normally a

standard part of a programming language, were deliberately barred

from a language to prevent a user from bad practices. This is a

prime example of how design and development techniques affect

decisions on which constructs are to be included in or excluded

from a language.

What part of the concurrent design process the design

Language is to support, what design philosophy it is to support,

what special techniques are to be used, which level of design is

being addressed, is it to drive a simulator directly or is it to

be compiled into an intermediate form, are all questions that

need be answered to scope the goals of a design Language.

A design Language can be used to support the Partitioning

and Allocation tasks in the distributed systems development

process as discussed in Section 4. The design language, in
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conjunction with a simulator, will be able to provide early

feedback to the designer as to the integrity of the proposed

system and how well it meets the specified requirements.

6.2.4. Language and the User

The importance of the user need not be emphasized. As in

the design of any system, the design of a Language should

consider user interface from the very beginning so that the

resultant product will have a high Level of performance and a

high probability of acceptance. Ease of use, ease of Learning,

clarity, value as a communication and documentation tool,

conduciveness to good design practices, overall quality including

extendability and modifiability are all important.

In the light of the discussion above, a design language

should be chosen or developed with clearly defined goals relating

to the process, automatic aids, design methodologies, and users

it supports.
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6.3. Requirements of a Distributed Design Language

The characteristics that a design Language must possess to

support the design of a BMD DDP subsystem are identified. They

are classified according to the selection criteria discussed

above. An added characteristic that will be discussed is

Experience and Status, which will give some feel for how ready

and how effective a Language is. These characteristics also

formed the basis for comparison among design languages surveyed.

6.3.1. Concepts

Concepts refer to the abstract ideas representable in the

design language, i.e., the Language's ability to handle

information.

Static Structure

The static structure describes that composition of a system

in terms of its constituent parts and how they relate to one

another.

1) Composition: a design language for BMD must be

able to describe abstract functions at a high

level to the specification of software and

hardware components in dletaiL.

2) Functional dependency: an abstract function must

be able to be expressed in terms of other

functions it calls upon to do its job. At the

high Level of design, this concept is necessary to

support the elaboration activity of design. At
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the Lower level of software design, this is

equivalent to the calling dependencies among

modules. This is also a way of relating the

functions at one level to those at a higher level,

and even perhaps to the requirements.

3) Data dependencies: Data dependencies reflect the

interfaces between functional components and the

data usage of a component. They refer to the

information passed from one part of the system to

another, or shared by several parts of the system.

The data that are shared may eventually be

implemented as a shared variable in a program, a

passed parameter, a message, or a record written

and then read from secondary storage. The

dependency must be describable without specifying

the actual implementation mechanism.

4) Resource Ownership: a resource may be shared among

processes or modules, but it may also be

exclusively owned by any one processes or module.

This idea of resource ownership is necessary to

support design philosophies such as Parnas'

information-hiding or black-box technique (see

Section 5.1.1). The idea is that information

should be hidden from modules that have no need to

know and therefore no need to access it.

Restricting the access of resources or specifying

ownership (or control) explicitly in the design

will prevent its unwitting or deliberate misuse.

I
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At the detailed design Level, the concept of

resource ownership is commonly manifested as

internal variables within a block, or as a block

nested within another block.

Data

Data describes the information passing through the system.

1) Abstraction: Data must be specifiable as an

abstraction at the higher Levels of design to

support data abstraction techniques as explained

in Section 5.1.1. At one level of design, it may

suffice to know that tracking information is

passed from entity A to entity B, without knowing

what this information consists of. At a later

time, it may be necessary to say that tracking

information consists of an identifier , speed and

position of the tracked object. While this is an

elaborated version of the above, with more details

on the logical structure of the data, no

implementation method has been specified as yet.

Still later, it may be advisable to say that speed

will be in miles per hour and it will be stored as

a real number occupying x number of bytes of

storage.

Data abstraction can be accomplished in one of

three ways. The first is by allowing the

incomplete definition of a data item, such as

specifying a name for the data with details to be

filled in later. Most programming languages do
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not allow this. They will assume a default type

of implementation such as integers it no type is

explicitly specified, or they will flag it as an

error. The second method is by allowing abstract

types such as sets in a language to specify the

logical grouping of data but not the physical

implementation. The third way is by allowing

user-defined data types -- a user can define the

structure of a data type in terms of standard

system-supplied types, and then define instances

of data of the newly-defined type. Most modern

programming languages offer this capability.

2) VoLume and Pattern: The volume of data and the

arrival pattern must be able to be specified to

give a picture of the traffic in a distributive

system.

Dynamic Behavior

The dynamic behavior of a system describes how a system acts

as it executes in a real environment in response to data,

conditions and other stimuli. It deals with the conditions under

which modules are activated, the events that Lead to such

activation, the order in which events occur, and how these events

are related to the data passing through the system. The order

and timing of events are critical in a real-time system. There

may be a need to indicate that certain activities take place

concurrently, or that a task has to be interrupted by another

task of higher priority.
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1) Concurrent Processes: a design Language for

distributed systems has to address the concepts of

concurrent processes as discussed in Section

6.1.1. MultipLe instances of the same process

must be allowed to act on different data at the

same time.

2) Initiation/Termination Conditions and Timing:

synchronization of processes.

3) Control of Common Resources: such as mutual

exclusion.

4) Communication Among Processes: via messages or

shared memory.

Auxiliary Design Information:

There are other information about the design of a system

that will be very useful to record.

1) Verification: if a design language allows

assertions at appropriate places for correctness

proofs, can specify performance information, and

has the ability to match system parts to

requirements, then the design of the system can be

readily verified.

2) Iterative Design: if a language can record

possible alternative solutions, the trade-off

considerations, and the rationale for the

alternative chosen, it would be more conducive to

iterative design. The other alternative solutions
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can be reconsidered without any loss of

information.

3) Implementation Information: the BMD design

language must also be able to describe specific

information so that the design will be detailed

enough for implementation. Examples of such

information are algorithms, and input and output

formats.

6.3.2. Design Philosophy

This refers to the design philosophies that the design

language supports.

1) World-view: some languages, for instance, are

event-oriented; others are process-oriented. some

Languages place emphasis on tracing the data

through a system. A design language for BMD DDP

sybsystem must have a wide world-view to encompass

all the complex concepts in the BMD Layered

Defense System.

2) Levels of Abstraction: it must support the

technique of levels of abstraction in the design

of a system.

3) Methodology/Design Rules: it should be able to

accomodate a general and flexible design approach.
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6.3.3. User Interface

Format

The format of the design language must be easy to

use ,aLso to be machine-readable.

Size and Syntax:

Ease of Understanding: the Language must be easy to use

and understand. The features should be intuitively

understandable.

Documentation:

6.3.4. Tools

This characteristic deals with the automated tools that are

available or planned to support the design lanaguage.

Data Base

It is desirable that the information represented in the

design language be parsed and stored in an intermediate form so

that various tools can make use of this already analyzed

information. This implies that the language should be a formal

one, with its syntax in Baukus-Naur Form (BNF), and its semantics

well-specified. The formality of a language makes it more

conducive to machine processing.

Analyzers

One type of tools that should be available is analyzers or

checkers or parsers that can detect discrepancies, redundancies

and incompleteness of a design.

Reporting packages

Reports should be generated to help the management of a
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development effort. The management aspects of a distributed

system have already been indicated as an important one within the

goal of an optimal development time.

SimuLators

Software that will provide statistics and gather information

about the proposed system from the modeL as represented in the

design language are usually referred to as simulators. Such

tools will be discussed in more detail in Section 9.

Evaluation Tools

Other computerized tools may be built to evaluate the design

of a system. Such tools may perform sophisticated mathematical

analyses on the system. They may perform proofs of correctness

on critical portions of the system.

6.3.5. Experience and Status

This characteristic indicates the readiness of a language

for use. It includes the types of application for which a

language has been used, the size of the application, and the

experiences found in using it. It also incLudes the status of

the language, i.e., whether is has been used or is still in an

experimental stage.
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6.4. Languages Surveyed

Several Languages were surveyed for potential use as a

design language for the DOP subsystem under study. Some of these

Languages were not all originally developed as a design language,

but were felt to be suitable as a design language because of the

functions they provide. They were selected for study because of

their ability to represent concepts of concurrency.

6.4.1. PSL

Problem Statement Language (PSL) was developed by the ISDOS

(Information System Design and Optimization System) project at

the University of Michigan [Teichroew 74).

It was originally designed to formalize the requirements for

a large computer-based information system, but its capabilities

make it useful in high-level design as well. It has the ability

to describe the static structure of a target system in terms of

objects within the system, the relationships among them,

including data connections. For example, PSL delineates the

boundaries of the system by identifying physicaL units of data or

information external to the proposed system. These are called

Inputs and Outputs. It also identifies Real World Entities that

the system interfaces with. Next, the units of data are

identified, called Sets of Entities or Groups of Elements. They,

together with Inputs an Outputs, represent the information flow

through the system. Finally, there are Processes and their

constituent processes which operate on the data.

The objects listed above are tied together by relationships

such as Subpart of, Contained In, Uses, Derives, and Updates.
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The ability to represent the dynamic behavior of a system is

Limited to describing Events that Trigger certain Processes. In

addition, sizing information, some project management

information, and narrative descriptions can be expressed.

Concomitant with the development of PSL was the development

of a software package PSA (Problem Statement Analyzer) that

builds a data base from a set of PSL statements, checks it for

consistency and completeness, and retrieves as well as

manipulates selected information from the data base, generating

reports to the user for analysis. Reports generated include

varied representations of the infomation in the data base such as

selected listings, retrieval by keyword, matrices, and flow

diagrams.

Previous evaluations of the language found it difficult to

specify hardware components in PSL since PSL addresses functional

requirements only and prevents "over-specifying". It was

difficult to relate the static view of the system to the dynamic

view. In other words, processes, events, and data are not

related enough to give a comprehensive view of the subtleties of

the dynamic system. Response times and traffic volume can only

be described in textual form, not amenable to computerized

parsing. FLow of information among processes is restricted

because a data item cannot be both output from and input to

processes. PSA is heavily reporting oriented, but PSL should be

supported by more tools such as simulation to reap the full

benefits of a formal specification language. The data base built

from PSL statements retains much of the information for future

tool support. Characteristics of PSL are listed below.
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CHARACTERISTICS OF PSL A

I. CONCEPTS

STATIC STRUCTURE

Composition

processes

Functional Dependency

processes can be SUBPARTS OF or

UTILIZES other processes.

Data Dependencies

processes RECEIVES input and GENERATES output;

processes UPDATES, USES, and DERIVES data.

Resource Ownership

all variables are global, hence not ownership

of data;

process ownership is indicated by SUBPARTS OF.

DATA

Abstraction

SETS consisting of ENTITIES consisting of GROUPS

consisting of ELEMENTS;

no user-defined data types or encapsulation.

Volume & Pattern

in textual form.

DYNAMIC BEHAVIOR

Concurrent Processes

no concept of different instances of the same process

working on different data at the same time.

Initiation/Termination Conditions & Timing

processes TRIGGERED by EVENTS or the presence of
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T71
INPUTS;

no timing information.

Control of Common Resources

none.

Communication Among Proceses

via data which can be messages or shared memory.

AUXILIARY DESIGN INFORMATION

Verification Information

none except performance information in textual form.

Iterative Design Information

no record of alternative solutions.

Implementation Information

no hardware specification, physical implementation

of data, or algrithms.

II. DESIGN PHILOSOPHY

WORLD VIEW

process-oriented and emphasis on data flow.

LEVELS OF ABSTRACTION

yes.

METHODOLOGY/DESIGN RULES:

hierarchical; distinguishes information outside the

system (INTERFACES) from that which is inside.

II. USER INTERFACE

FORMAT

textual statement; graphical reports available.

SIZE & SYNTAX

about 70 keywords or statements; no formal syntax.

EASE OF UNDERSTANDING

the world-view requires some learning.
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DOCUMENTATION

textual explanations allowed.

III. TOOLS

DATA BASE

information in PSL statements are transformed into a

data base for subsequent processing.

ANALYZERS

analyzes completeness, consistency, and redundancy.

REPORTING PACKAGES

good reporting package - over 15 reports including

dictionary lists, DATA/PROCESS interactions, and

hierachical organization of data.

SIMULATORS

none.

IV. EXPERIENCE & STATUS

PSL has been installed on a variety of machines;

the language and its support tools are still being

modified or extended.

I
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6.4.2. IORL

IORL, Input/Output Requirements Language, was developed at

Teledyne Brown Engineering, to reduce the costs and risks

associated with the development and maintenance of computer-based

systems ETeledyne 77]. It is in graphical form, with the syntax

specified in Backus-Naur Form production rules. The semantics

are given in graphical form.

IORL consists of three main elements, SBD (Schematic Block

Diagram), IOPT (Input.Output Parameter Table) and the IORTD

(Input/Output Relationships and Timing Diagram). These three

elements correspond to the main steps in the progression of a

systems concept through various stages of design to complete

specification.

SBD's are used to identify the structure of a system in

terms of components or functions and their interfaces.

Interfaces can be internal to the system, as well as external,

and are labelled for subsequent correlation with IOPT's.

Each IOPT expands the definition of one interface in the

SBD's. An IOPT is a table that lists all the parameters in the

interface by name, units, range of values and accuracy. This is

just a logical definition, no physical implementation is implied.

An IORTD is a graphical elaboration of an SBD block. It

uses precisely defined symbols and mathematical expressions to

describe Input/Output events, their timing and precedent

conditions, and processing steps between events.

User input and reporting capabilities are available in a
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demonstration version. Configuration management has been

designed to maintain versions and keep track of the progress of a

system. Simulators are also being planned.

Characteristics of IORL are tabulated below.
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CHARACTERISTICS OF IORL

I. CONCEPTS

STATIC STRUCTURE

Composition

(SBD) blocks; (IORTD) processing steps.

Functional Dependency

an SBD block expanded into IORTD steps;

an SBD block expanded into more SBD blocks

at a Lower level of detail.

Data Dependencies

interfaces among SBD blocks defined by

IOPT (parameter tables).

Resource Ownership

blocks have hierarchical tree structure;

one I/O parameter table belongs to only

one interface;

internal parameter tables (IPT).

DATA

Abstraction

1 level of grouping parameters into group

numbers.

Volume & Pattern

no.

DYNAMIC BEHAVIOR

Concurrent Processes

the "And" symbol specifies concurrent processing

steps in IORTD. A set of Predefined Macros each

representing multiple I/0 events can be instan-
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tiated. User can define common sequence of IORTD

symbols in a Predefined Process Definition (PPD)

to be used over again.

Initiation/Termination Conditions & Timing

events and logical conditions control the

initiation and termination of processes.

Timing specified between chronologically

consecutive events.

Control of Common Resources

no.

Communication Among Proceses

interfaces defined by parameter tables.

AUXILIARY DESIGN INFORMATION

Verification Information

timing specifies response time specifications;

it is possible to generate event histories.

Value ranges specified for parameters.

Iterative Design Information

alternatives could be indicated by "Or" symbols.

Implementation Information

Physical Interface Characteristics (PIC)

planned but not complete.

II. DESIGN PHILOSOPHY

WORLD VIEW

process and event oriented.

LEVELS OF ABSTRACTION

set of SBDs, IOPTs and IORTDs specify entire

system at each level.

METHODOLOGY/DESIGN RULES:
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hierarchicaL; designed for requirements, design,

implementation of general systems, and for

documentation of test results.

II. USER INTERFACE

FORMAT

user input format is graphical and tabular.

SIZE & SYNTAX

syntax in BNF(Backus-Naur Form) containing 14

graphical symbols and 138 production rules.

EASE OF UNDERSTANDING

semantics requires Learning, but perhaps no more

so than other Languages representing complex

concepts.

DOCUMENTATION

IORL system documentation procedure exists.

III. TOOLS

DATA BASE

prototype system manipulates input symbols

for reporting.

ANALYZERS

to be developed.

REPORTING PACKAGES

prototype s .e.

configuration management tools planned.

SIMULATORS

some simulator needs being analyzed;

to be developed.

IV. EXPERIENCE & STATUS

prototype system stage.
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6.4.3. COSY

Lauer et at CLauer 79J developed a new notation for

specifying systems of concurrent proceses sharing distributed

systems of resources. This notation, named COSY for Concurrent

System, is a formal Language whose syntax is given in production

rules. The meaning of COSY programs was based on a translation

rule which when applied to a COSY program results in a finite

labelled transition net. Important properties of the programs

themselves can also be studied from a collection of occurrence

graphs.

Main elements of the COSY language are paths and processes.

A path defines a resource and determines a collection of totally

ordered set of operation activations. Concatenation and

alternation are allowed in this sequence of operations on a path.

Operations belonging to a component path may be active only one

at a time in the order specified. In the absence of paths, the

processes are permitted to activate their component operations or

to progress concurrently. A macro notation, less formal and more

akin to programming languages, is available to enable the

conceptual decomposition of a complex system into simpler

subsystems. Programs can be built using the macro notation to

guarantee mutuat exclusion of resources shared by concurrent

processes.

The world-view of COSY is a resource oriented one in that

the responsibility for ensuring proper functioning of the system

is associated with the resources rather than the processes using

the resources. In the process oriented approach, usually some

synchronization operations are needed in the processes to ensure
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correct behavior of the system. This resource oriented view is

felt to simplify the task of understanding a system.

One noted deficiency is that it is impossible to specify

structural criteria of absence of deadlock for COSY programs. A

suggested extension is to use macro generators to replicate a

number of paths and processes from given ones, thus allowing the

definition of new operations in terms of already defined ones.

It is not known what types of tools are available, if any,

or planned to support COSY at this time.
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CHARACTERISTICS OF COSY

I. CONCEPTS

STATIC STRUCTURE

Composition

paths of operations of processes and

resources; the Macro Notation allows

programs scoped by BEGINs and ENDs.

Functional Dependency

Macro Notation allows conceptual decom-

position of system into subsystems.

Data Dependencies

via parameters.

Resource Ownership

data defined in macro Begin ... End scope.

DATA

Abstraction

in macro notation generalization to n frames

of paths by replicators.

Volume & Pattern

no.

DYNAMIC BEHAVIOR

Concurrent Processes

operations are permitted to be active

concurrently unless restricted by paths.

Initiation/Termination Conditions & Timing

ordered by paths; no specific timing.

Control of Common Resources

critical sections can be built in program
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to guarantee mutual exclusion.

Communication Among Proceses

only via operations.

AUXILIARY DESIGN INFORMATION

Verification Information

order of operations represented in formal

basic notation which lends itself to

formal verification.

Iterative Design information

alternatives could be indicated by "Or".

Implementation Information

a suggested extended notazion allows a

specification section followed by an

implementation section.

II. DESIGN PHILOSOPHY

WORLD VIEW

resource oriented -- resources have the responsi-

bility to ensure that their operations are used

correctly by processes.

LEVELS OF ABSTRACTION

yes.

METHODOLOGY/DESIGN RULES:

II. USER INTERFACE

FORMAT

formal statements with procedural-Like macros.

SIZE & SYNTAX

macro notation contains 8 production rules

in BNF.

EASE OF 1INDERSTANDING
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world-view requires learning, but most concepts

appLy uniformly to processes and resources alike.

DOCUMENTATION

Language does not provided much documentaion

besides information in language statements.

III. TOOLS

DATA BASE

not known at this time.

ANALYZERS

unknown.

REPORTING PACKAGES

unknown.

SIMULATORS

unknown.

IV. EXPERIENCE & STATUS

applied to illustrate many basic resource

management poblems. Other experience unknown.
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6.4.4. Simula

Though Simula is primarily a simulation language, it has

many features that warrant consideration of it as a design

language. Simula will be described under simulation in Section

9.
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CHARACTERISTICS OF SIMULA

I. CONCEPTS

STATIC STRUCTURE

Composition

algorithmic language which includes Algol-60.

Has most of the modular structures such as

blocks, procedures, functions, and classes.

Functional Dependency

module calls, can be recursive. Can pass

procedures, functions and class variables

as parameter.

Data Dependencies

data obey block-structure rules, permitting

access to global and non-local variables.

the CLASS construct can be used as a data

handler which means that the class only

defines data and the class can be passed

from one module to another or used by

remote accessing.

Resource Ownership

some restriction of access can be accomplished

by textual structure of program. DEC-10

implementation has the concept of a hidden

attribute which restricts access to the

module in which the attribute is defined.

DATA

Abstraction

a form of data abstraction is permitted by
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the class structure and the hidden facility.

Also has a "virtual" facility that allows

various versions of an attribute.

Volume & Pattern

DYNAMIC BEHAVIOR

Concurrent Processes

parallel processing represented logically

but executed in actuality sequentially.

Permits more than one instance of a

module.

Initiation/Termination Conditions & Timing

Clock is a simulation clock which implicitly

starts the execution of processes at the

scheduled time. No real-time clock feature.

No need for synchronization because of

simulation.

Control of Common Resources

control is only logicaly concurrent. No

need for mutual exclusion because of

sequential simulation.

Communication Among Proceses

shared memory - based on static scoping

and class; messages - by parameters.

AUXILIARY DESIGN INFORMATION

Verification Information

Iterative Design Information

alternatives can be flagged by the

HIDDEN facility in the DEC-10

implementation of Simula.
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Implementation Information

since ALgol-60 is a subset of the

language Simula, implementation

issues can be specified with ALgol.

II. DESIGN PHILOSOPHY

WORLD VIEW

process view.

LEVELS OF ABSTRACTION

classes/procedures/functions can be

defined within one another.

METHODOLOGY/DESIGN RULES:

hierarchical - based on static nesting

and procedure call discipline.

non hierarchical - behavior of classes

when used as coroutine.

II. USER INTERFACE

FORMAT

textual.

SIZE & SYNTAX

requires 24K on DEC-10 at run-time.

EASE OF UNDERSTANDING

fairly easy to use and understand for

and experienced programmer;

has good structures.

DOCUMENTATION

no explicit documentation capability.

III. TOOLS

DATA BASE

Existence of actuaL data base of parsed

79

,~ .r~ 4



information unknown.

ANALYZERS

based on Algol, therefore BNF grammer;

good syntax and type checking, amenable

to machine processing.

REPORTING PACKAGES

good statistical information gathering.

SIMULATORS

runs on DEC-10 and IBM 360/370.

Debugging includes break points, modifying

value of variable, and execution trace display.

Simulators tend to be quite large.

IV. EXPERIENCE & STATUS

used predominantly on simulation to model

operating system kernal and to implement

data bases.

Established compiler; ready to use.
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6.4.5. Survey Summary

The characteristics of the Languages surveyed are summarized

in Figure 3.

The design languages surveyed were chosen because of their

ability to represent concurrent concepts. Even then, they do not

satisfy all the desired characteristics for describing

concurrency.

Though the number of languages that can describe concurrency

is quite small, the surveyed languages represent a varied sample

of design Languages. IORL, for instance, is graphical, while the

others are textual. Simula contains a programming language as a

subset. COSY has a formal basic notation, and is quite small.

It is resource-oriented, while the others have a process-oriented

philosophy.

Of the four Languages surveyed, only Simula is an

established language and ready for use. It is the view of the

authors that the use of a design language will facilitate the

development of distributed systems for the reasons discussed at

the beginning of the Section. Since not too many suitable

languages are ready for use at this time, a design language and

its support tools are long-Lead items whose acquisition should

preceed that of a full-scale development. Since Simula is the

only established language, if a DEC-10 or DEC-20 is compatible

with the other requirements of a software development facility,

it can easily be incorporated to serve as a compromised solution

while a more suitable language can be brought up to ready state.

The processing overhead associated with Simula, as with most
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general purpose simulation Languages, is not critical because the

speed required of a development facility is not as critical as

that of the target system. It, on the other hand, eliminates the

development cost of a specialized simulation, and offers the

flexibility for tradeoff studies that specialized simulations do

not.

Ada can also be considered for use as a design language by

seeing how weLt or poorly it satisfies the characteristics set

forth here. If suitable, a design language that can also serve

as an implementation language will have the added benefit of

easing the transition from the design phase to the programming

phase.

Another language that probably warrants investigation is

RSL, a requirements language which is part of the SREM

methodology developed at TRW.
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FIGURE 3. DESIGN LANGUAGE SUMMARY

PSL IORL COSY SIMULA

CONCEPTS
STATIC STRUCTURE

Composition process block process block
program procedur

function
classes

Func. Dep. Yes Yes Yes Yes
Data Dep. Yes Yes parameters Yes

DATA
Abstraction Partial 1 Level Partial Partial
Vol. & Pattern textual No No No

DYNAMIC BEHAVIOR
Conc. Proc. no multiple Yes Yes Yes

instances

Init./Term. Partial Yes order, simulated
Res. Control No No user-built No
Proc. Comm. Yes Yes via Yes

operations
AUX. INFO. text Partial Partial Partial

DESIGN PHILOSOPHY
WORLD VIEW process process resource Partial

oriented oriented oriented oriented
ABSTRACT. LEVELS Yes Yes Yes Yes
METHODOLOGY hierarchical hierarchical hierarch

USER INTERFACE
FORMAT textual graphical , formal textual
SIZE & SYNTAX 70 keywords BNF smaLL large
EASE OF UNDERSTAND. fair fair fair fair
DOCUMENTATION textual documentation No No

TOOLS
DATA BASE Yes prototype unknown unknown
ANALYZERS Yes planned unknown Yes
REPORTING TOOLS Yes prototype unknown Yes
SIMULATORS No planned unknown Yes

EXPERIENCE & STATUS fair prototype unknown establise
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SECTION 7

IMPLEMENTATION LANGUAGE

7. IMPLEMENTATION LANGUAGE

A key consideration in the definition of a software

development facility is the language in which the software is to

be developed and the support tools for entering, modifying,

translating, linking, loading, and testing of programs. The user

and the programmer can communicate better if the communication is

in terms of the job to be accomplished rather than in terms of

the tools necessary to accomplish the job. Therefore, an

implementation language should provide primitives which make it

easy to define the objects which are typical of the application.

The language should also provide control structures which make it

easy to express the natural flow of control required by the

application. Additionally, the detection of run-time errors and

dynamic debugging in terms of the source code can be facilitated

by a good language.

Good program development support tools provide an effective

method of shortening the software development time and,

therefore, reducing the cost. Traditional support tools are

compilers, general purpose editors, linking loaders, and good

testing and debugging facilities. Work being done at Carnegie

Mellon University and other places is directed at improving these

tools by defining a uniform and integrated system for program

development. Ideally, the tools in the environment would be

developed in such a way that they appear to understand each

other's objectives and collaborate toward a common goal. For
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instance, a syntax directed editor rather than a general purpose

editor can be useful in simplifying both the processes of

entering syntacticalLy correct programs and debugging programs at

the source rather than machine level.

Tools are being developed for "programming in the Large."

These programs will simplify the mechanics of monitoring and

controlling the interdependencies of the many modules used in a

large software development effort. The problem of managing a

large software development project will also be eased by several

projects currently underway.

This Section will cover work done concerning the selection

of an implementation language for BMD DDP subsystems. Section 8

will cover work done in defining the need for a good program

development environment.
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7.1. Need for Concurrent Concepts

The possibility of performing computations and operations in

parallel exists at many levels in a system as complex as a BMD

application. At the lowest leveL, horizontal micro-architectures

allow many micro-operations per micro-instruction. At the

operating system level, Input/Output processing overlap and

multiprocessing systems present the opportunity for parallel

processing. At the highest level, the implementation of a BMD

system as a DDP system can present even more opportunities for

parallel processing.

The work being done on the 2-AU experiment at MDAC, the

automatic generation of microcode, addresses the problem of

detecting and exploiting parallelism at the lowest level.

Parallelism at this level can be used to reduce the time needed

to perform calculations. This work will no doubt be significant

in shortening the computation time of various critical functions

needed in the BMD application. The Very High Speed Integrated

Circuits (VHSIC) program currently being funded by the DOD also

addresses the problem of shortening computation time. It is

expected that the VHSIC program will have a significant impact

upon parallelism and computing at the micro-instruction level.

The work done at Mellon Institute has been directed toward

specifying and exploiting parallelism at the operating and

functional levels of a BMD DDP system rather than at the micro-

instruction level. The primary goal of the work being reported

was to identify a language or set of languages and the necessary

hardware and software support tools needed for a system

development facility suitable for the development of a typical
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BMD appLication where the system is to be implemented as a DDP

system.

As discussed in section 3, a typical BMD application can be

classified as a real-time control system. Our approach to

identifying desirable characteristics of a language suitable for

a BMD DDP application has included a study of the evolution of

languages developed for other real-time control applications. In

particular, the portion of an operating system which must control

and manage the resources (i.e. the CPU, memory, peripheral

devices, and data) of the system is a real-time system. Included

as Appendix 8 is a discussion of the use of high order languages

for programming operating systems. One of the more notabLe

requirements in the design of operating systems is the need to

support concurrent processing. As many of the potential

advantages of a BMD DDP system assume support fir concurrent

processing, we contend that an investigation into the development

of languages used in writing operating systems would be

beneficial.

7.1.1. Concurrency Within Operating Systems

A computer system is usually made up of many components. In

addition to one or more central processing units and the main

memory, it may support any number of standard I/O and storage

devices as well as numerious special purpose devices such as the

radar devices of a typical BMD system.

These devices are capable of operating in parallel, but at

vastly different rates of speed. The time to process a single

piece of data may vary from a tenth of a second for a consoLe
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a millionth of a second for a CPU. The high differential in speed

coupled with the advantages to be gained by enabling several

sequential tasks to use the resources of the system

simultaneously have made systems which can suport concurrent

processing very desirable.

Concurrent processing at the system level is the procedure

of allowing more than one Logical or sequential task to be

executing at a given time. This can be accomplished by sharing

the system's resources such as the CPU, memory, peripherals, and

data. The algorithms used to define and implement sharing of the

CPU can range from simple round robin schemes to very complex

procedures. Supporting the illusion that processes are running

concurrently usually involves context swapping and can usurp much

of the systems resources. This becomes a particularly acute

problem when a system is heavily Loaded.

Two factors in the development of hardware will probably

have an effect upon where the illusion of tasking is supported.

First, the availability of architectures which can be micro-coded

will make it possible to define much of the necessary support

for tasking as a hardware function, rather than requiring that

such support be provided by the operating system. Second, with

the availability of powerful inexpensive processing devices and

the improvements in communication technology among these devices,

it is becoming cost effective to support Logical concurrency with

actual physical concurrency such as can be provided by DDP

systems.

From the point of view of the Language designer however, the

way in which the concurrent processing is implemented should not
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be a critical factor in the specification of the Language

primitives. A programming Language should provide primitives

which facilitate the description of the function to be performed

in terms of the problem to be solved. If a task force of

cooperating processes is an ideal way to describe the functions

to be performed, then the language should provide a convenient

means of identifying and describing a task force of cooperating

processes.

At a minimum, a good concurrent language should provide

primitives necessary to identify functional tasks which can

operate concurrently and primitives to support "safe" inter-task

communication and synchronization. The compiler for the language

would then translate that description into code that can execute

on the the available hardware, be it either a single CPU where

the illusion of concurrency is supported by time slicing, or on a

DDP system where tasks actually can execute concurrently.

The possibility of exploiting the full parallelism of a DDP

system presents problems which still require a great deal of

research. However, it is clear that the parallelism must be

addressed in the design of the system, the programming of

applications for the system, and the run-time support.
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7.1.2. ALternatives to Concurrent Languages

The concept of concurrent processing, as well as many

language constructs, has its beginnings in operating system

programming. The necessity of utilizing the various peripherals

and handling the synchronization and data transfer functions

between the CPU and the components in the system involves many of

the same considerations that must be addressed in a DOP system.

Often applications which require concurrent processing have

made use of the command Language of the system in order to tap

the power of the system. For examp.e, the UNIX operating system

CRitchie and Thompson 743 provides the fork and join primitives

to support concurrent processing. System calls such as LOCK,

WAIT, and SLEEP can be found in the code of many data base

management systems. These system calls can be used to supply the

protection and synchronization necessary in a distributed data

base system.

The approach of supporting concurrency by tapping the

resources of a operating system has been used successfully in

many applications. This approach is usually achieved by

supplementing a Language with a Library of system macros or

subroutines. There is an on-going effort at Systems Development

Corporation to implement a Library of network subroutines for

distributed systems on a network of VAX's under the operating

system VMS.

However, concurrency which is supported by a Language rather

than the operating system is preferable for the reasons

enumerated below.
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1) Concurrency supplied by an operating system implies

that the application must run not only on a particular

machine but under a particular operating system.

Therefore, application programs which utilize operating

system supplied functions are both machine dependent

and operating system dependent.

2) An operating system is just another program and

therefore it, too, utilizes the systems resources. In

many cases, real-time control programs require only a

small percentage of the functions supplied by an

operating system. Therefore, it may be too costly (in

terms of the resources required by the operating

system) to use an operating system to support the

concurrency required by a real-time control system.

3) Testing facilities for programs which contain operating

system functions must simulate or emulate not only the

machine but the operating system running on that

machine.

4) Changes or problems with the operating system can

affect the application program.

5) Interprocess communication and synchronization

protection, which is defined by the Language, can be

checked by the compiler at compile time. This can

significantly reduce the necessary run-time checking

which in turn should improve the speed of execution.

6) Perhaps the most important advantage of Language

supplied concurrency is that functional concurrency can
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be specified regardless of its actual implemetation.

That would certainly reduce the cost of modifying the

system over a period of time.

7) The power of a macro or subroutine is Limited. There

are concepts not easily implemented by a subroutine

that are more easily done b, a compiler.

7.1.3. Run-time Support for Concurrency

As discussed in the previous section, mutual exclusion and

concurrency are desirable. However, the actual implementation of

the constructs usually require some run-time support. One

approach which has been used is to support the illusion of

concurrency with a Kernel, an assembly Language program which

runs underneath the concurrent programs. While this may be

satisfactory in many cases it probably would not be acceptable in

a DDP BMD application because of the slowdown in the execution

speed. However, if a very efficient Kernel could be impLemented

in microcode or actual hardware, this might provide an acceptable

solution.

The problem of shortening the system development time of a

distributed system can be attacked from many angles. Up to this

point we have Limited our discussion to the need for a concurrent

Language and support tools for the design, implementation, and

testing of concurrent programs. However, the target hardware can

be designed in such a way that it too can be a significant factor

in shortening the software development time.

The purpose of a compiler is to translate programs expressed
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in one form, source code, into an equivalent program represented

in another form usually the machine code of the target machine.

As advances in technology make it possible to create more

advanced machines, it becomes necessary to produce new compilers

for the new machines. A retargetable compiler, a compiler which

can produce code for different machines, is one approach to the

problem. A standarized architecture or instruction set for the

target machine is another approach.

Microcodable machines provide the opportunity of addressing

the software development problem from "bottom-up".

Traditionally, the instruction set of a machine was effectively

Limited by hardware costs. However, the availability of

microcodable machines have expanded the possible complexity of

the instruction set, so that the problem of defining an

instruction set becomes that of choosing an optimum set of

generally useful instructions.

This problem was addressed in the Nebula project at Carnegie

Mellon University ESzewerenko and Dietz 803. The work is part of

the Military Computer Family Project of the U.S. Army initiated

to design a standard computer architecture (AN/UYK-41 and

AN/UYK-49). The result of the work is of particular interest for

the Nebula machine is essentially equivalent to the Kernel needed

to provide run-time support for concurrent programs. Nebula

provides support for Linked Lists, execption handling, and task

control. The following is a sample of the capabilities defined by

a Nebula machine.
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Linked List capabilities:

- insert and remove from a doubly Linked List

- insert and remove from a singly Linked List

Exception Handling Instructions: V

- raise an exception cd

- store the exception code

- set the exception handler entry address

- return and propagate the exception

Task control instructions:

- Loading and storing tasks

- starting and stopping tasks

- starting and stopping task with exceptions raised

- building and initiating new t contexts

Standardization of the Nebula Instruction Set will simplify

both the run time support required by a concurrent Language and

the code generation phase of compiler design and implementation,

thus, simplifying and shortening system development time.
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7.2. Effectiveness of a Concurrent Language

So far the effectiveness of a concurrent Language over a

sequential Language has been indicated primarily by experiences

from the operating systems builder community. The quantitative

measure of the effectiveness of a concurrent Language is no easy

matter. An experiment is proposed here to obtain such a measure,

if one is desired, fully realizing that software experiments are

typically expensive, assumptions are crude, and control of

factors that might bias the experiment is difficult.

We assume that the factors affecting software quality are

independent, i.e., one has no effect on the others:

1) the programmer(s);

2) the programming Language;

3) the programming environment (operating systems,

support tools ...... , etc);

4) the aLgorithm to be implemented;

5) software engineering standards (structured

rules, ..... ,etc).

We further assume that representatives of each category can be

rated in relative merit. For instance, p = P(2) / P(1) is a

measure of the quality of programmer P(2) over programmer P(1).

The measures of interest are the correctness of the

resulting programs and the time required to produce them, with

emphasis on the Latter.
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The following qualities can be measured in each case.

1) x: time to code (in terms of programmer hours)

2) y: time to debug (care should be taken to keep the

environment stable. One method is the use of the I
same language and same compiler but ruling out the

concurrent features to effect a sequential 

language.)

3) z: time to prove (either a proof of correctness

which may be impractical at present; or time for

another programmer to read , understand the code,

and be satisfied it is correct - subjective

measure.)

Let-

P(1) = programmer I,

P(2) = programmer 2,

A(1) = algorithm 1,

A(2) = algorithm 2,

L(1) = a sequential Language,

L(2) = a concurrent language,

p = P(2) / P(1),

a = A(2) / A(1),

and L = L2) / L(M).

Holding other factors constant, two programmers of comparable

ability will code two algorithms of nearly equal complexity in two

Languages in the following fashion to avoid "Learning" of the

algorithms. That is, P(1) will code A(1) in L(1), then A(2) in
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L(2). PM2 will code AM2 in L81), then AM1 in L(2).

(conc. Lang.) L (2) AM2 ACI)

(seq. Lang.) L() A ( I A(2)

P(1) PM2

Progrm ALgorithm Language Time to code Time to debug Time to
prove

1 1 1 X 0) y (l z(1)

1 2 2 x (2 y(2) z 2)

2 1 2 x(3) y( 3 ) z(3)

2 2 1 x(4) y(4 ) z(4)

where Wc(), y~l), z(l) are functions of AMi, PMi, and LM1;

x(2), yC2), z(2) are functions of AM2, PMi, and LM2;

and so on.

Then,

x(2) = a L W~)

x(3) = p L W(1

x(4) = a p x(i)

giving,

L. = /(x(2)x(3)) /(x()x(4))

simiLarly for y and z, thus giving three experimental results of

L, a measure of the merit (or demerit) of a concurrent Language

over that of a sequential Language.

Note that this same experiment can be conducted to evaluate

the alternative means of providing concurrency as discussed in

Section 7.1.2.
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7.3. Requirements of BMD Implementation Language

Section 3 indicated that critical components of a BMD system

are the numeric computations and the real-time control functions.

Work done by JRS industries provides further confirmation that

real-time control is indeed a critical component of a BMD system.

The attributes that will affect the choice of an

implementation language for BMD DOP subsystem are discussed

below. The requirements for a suitable language are listed under

each attribute. The list of attributes also formed the framework

under which potential languages surveyed were compared (see

Section 7.3).

1) Concurrent Language Features - for real-time

control. The ideal language must have the

concepts of processes, process initiation and

synchronization, and mutual exclusion of shared

resources.

2) Modularity - the BMD DDP implementation language

must provide the ability to compile modules

separately yet check types across boundaries.

That is, each module must be able to be compiled

separately, and then linked together with other

compiled modules to form an executable program.

This feature is desirable to promote modular

development and checking, and to accommodate the

need for interfacing with modules coded in other

languages such as assembly language for

efficiency.
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3) Environment - this includes information on the

machines which support the Language, and support

tools such as editors available to provide a

friendly programming and executing environment. A

complete set of good integrated program

development support tools should be available for

any language used to implement a system as large

and complex as a BMD DDP subsystem.

4) Experience in Usage - problems in a newly defined

Language tend to become apparent as that language

is used in various applications. There are

distinct advantages in using a "mature" Language

which has withstood the test of time and use.

5) Readiness for Use - this includes information on

available compilers and on-going or planned

compiler development. A suitable language must be

in a status ready for production use with good

compiler support.

6) Conduciveness to Good Software Engineering

Practices - a Language that will provide a good

program development environment to shorten

development time must be conducive to the design

and engineering techniques discussed in previous

sections. The features that generally contribute

to such support are the control structures, data

abstraction or encapsulation, good error handling

and recovery, and well-defined interfaces.
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7) Inadequacies - this refers to the extensions that

are necessary to enhance its suitabiLity for BMD

applications and the size .f effort such

extensions represent.

8) Performance - such as speed and reliabiLity. The

BMD Language must be efficient in controL of

hardware resources, access of memory, context

switching and arithmetic operations.
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7.4. Languages Surveyed

Unfortunately, Languages which do support all the features

required by a BMD application do not seem to exist at this time.

Thus, the choice of any Language must be a compromise.

A concurrent program is a set of cooperating sequential

tasks which operate simultaneously to accomplish a common

objective. As previously indicated in this report, there are

many advantages of designing and programming a DDP BMD system as

a concurrent program. Therefore, we have investigated only

languages which can support concurrent programming. The following

is a discussion of the more promissing candidates:

- Concurrent Pascal (CPascat)

- ModuLa

- Concurrent SP/k (CSP/k)

- Ada

The concurrent features of these languages are summarized in

I.

Figure 4.
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7.4.1. Concurrent Pascal

Concurrent Pascal (CPascaL) tBrinch Hansen 773 represents

one of the early efforts to define a Language for writing "high

quality" concurrent programs to implement reliable computer

operating system and real-time control programs. Often, the

testing of a concurrent program is very difficult because the

result of a concurrent program is highly dependent on the

relative speeds of its individual tasks. Unfortunately, the

execution speed of a program will vary somewhat from one run to

the next. Therefore, a program containing concurrent tasks may

operate correctly on one run, but not on another. Locating and

correcting these execution-time dependent errors are notoriously

difficult.

Brinch Hansen attempted to define a programming Language for

writing reliable operating systems and real-time control programs

in such a way that they were not dependent upon the execution

speed of the tasks. The Language provides for the explicit

definition of any intertask communication and synchronization in

such a way that it is not dependent upon the speed at which it is

executed. The rules of CPascal are deliberately very strict and

can be checked by a compiler. Thus, CPascaL encourages or even

forces reliable programming.

General Language Features

CPascaL, a modification of sequential Pascal CWlrth 713, is

a block structured Language providing data types and operations

or statements which apply to the data types. The following is a

List of sequential programming facilities provided by the CPascaL
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II
Language.

DecLarations:

- Constant Declaration - associates an identifier with a

constant.

- Type DecLaration - defines the data types in terms of basic,

impLicitly defined, or previously declared types.

- Basic types are:

- integer,

- Boolean, and

- char.

Standard procedures to convert values of one basic type to

another are:

- ord(x) returns the ordinal value of the character x

- chr(x) returns the character with the ordinal value x

- conv(x) returns the real corresponding to the integer x

- trunc(x) returns integer corresponding to the real x

- Enumeration - Lists identifers that denote values

constituting a data type.

- Array Structure - consists of a number of components which

are all of the same component type. Each component is

identified by a number of indices.

- Record - structure consisting of a number of components,

called record fields. The final field of a Pascal record

can be of type variant, that is, it can have values of

different types.

- Variable Declaration - associates a unique name with and

reserves memory for a fixed data type.

- Expression - specifies the rules for evaLuating the value of
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the operands being operated upon by the operators in the

expression.

Statements:

- Assignment Statement - assigns the value of an expression to

a variable. I

- Procedure Call - denotes the execution of the specified

procedure.

- Statement Sequence - is a sequence of statements separated

by semicolons.

- If Statement - specifies conditional execution of actions

depending on the value of Boolean expressions.

- Case Statement - specifies the selective execution of a

statement depending on the value of an expression.

- While Statement - specifies the repeated execution of a

statement sequence depending on the value of a Boolean

expression. The expression is evaluated before the first

and after each execution of the statement sequence.

- Repeat Statement - specifies the repeated execution of a

statement sequence depending on the value of a Soolean

expression, but the expression is evaluated after each

execution of the statement sequence.

- Loop statement - specifies the repeated execution of

statement sequences. The repetition can be terminated

depending of the value of a Boolean expression called the

exit expression.

- With Statement - specifies a statement sequence to be

executed with a record variable.

- Procedure - declaration consists of a procedure heading and

a block containing the declarations and statements of the
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procedure.

- Function - is a procedure which returns a value.

I Concurrent Language Features

Concurrent Pascal extends the block structured sequential

Pascal Language with concurrent PROCESSes and MONITORs.

PROCESSes can only communicate by means of MONITORs. A MONITOR

can DELAY a PROCESS to make their interactions independent of

their speeds. Once a PROCESS or MONITOR has been correctly

designed and verified, no other part of the program can make that

component behave erratically as access to private and shared

variabLes is controlled. The primitives to support concurrency

are system components of the following types:

- Process type defines a data structure and a sequential

statement that can operate on it.

- Monitor type defines a data structure and the operations

that can be performed on it by concurrent processes.

These operations can synchronize processes and exchange

data among them.

- CLass type defines a data structure and the operations that

can be performed on it by a singLe process or monitor.

These operations provide a controlled access to the data.

- Init statement, executed as a nameless routine, defines the

access rights and allocates space for the variables of

the system component being initialized.

- Routine entries provide the means of communication among

system types.

- Queues may be used within a monitor type to delay and

resume execution of a caLLing process within a routine
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entry. The folLowing standard functions applies to

queues:

- empty(x) returns a Boolean value defining if a queue is

empty

- delay(x) delays in queue x the calling process

- continue(x) resumes any process waiting in queue x

Program Development Environment

In addition to defining the language Concurrent Pascal,

Brinch Hansen defined and implemeted an operating system SOLO

written in Concurrent Pascal. Solo is a single user system

intended for program development. It supports editing,

compilation, and storage of Sequential and Concurrent Pascal

programs. These programs can access either console, cards,

printer, tape, or disk at several Levels (character by character,

page by page, file by file, or by direct device access).

As Solo was developed as a vehicle to illustrate the CPascal

Language, the editor and file system, as might be expected, is

fairly primitive. The Language compiler, however, is a rather

sophisticated program.

The seven pass compiler for CPascaL is:

- written In sequential Pascal

- generates a portable intermediate language (P-Code)

- could be modified to produce machine code

- developed for Digital Equipment's PDP-11/45 but should

run with only minor modifications on any system which

supports Pascal.
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Run-Time Environment

In order to support the abstract concepts of monitors and

processes and to interpret P-code, the output of the CPascal

compiler, a compiled CPascaL program, must be executed with a 4-K

assembly Language program called the Kernel. The kernel as

designed by Drinch Hansen:

- creates and manipulates the process states

- handles process scheduling and switching

- delays a process

- continues a waiting process

- ends a process

- creates monitors

- provides mutual exclusion for monitors

- handles the entering and Leaving of a monitor

- stops a job

- sets a clock

- waits a second

- indicates a system error

- does 1/O

TRW has developed compilers for a modified version of

CPascaL to produce code for the target machine, rather than

P-Code for a pseudo machine. Currently, they have compilers

which can produce code for the Digital Equipment Products, the

LSI-11 and the POP-11. They are also working on a compiler which

will produce code for the VAX computers. Should it be decided

that CPascaL would be a good implementation Language, the TRW

project would be of significant importance.

The existence of inexpensive microcodabLe machines is also a
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significant factor in the run-time environment of CPascaL and

other high Level Languages, especially those which support

concurrent processes. The microcodabLe machine can be programmed

to perform many of the functions which are provided by the

Kernel. Hardware support of functions that have been supplied by

a software kernel should provide a significant improvement in the ,

execution speed of CPascaL programs.

Experience in Usage

- TRW has a version of CPascaL for writing device drivers

CHeimbigner 783. As mentioned above, TRW has also

modified the National Bureau of Standards sequential

Pascal to compile CPascaL into LSI-11 code, PDP-11 code,

and is working on a version to produce code for the VAX.

The interpreted version has been used for research in DDP

systems on four PDP-11's and at the ARC.

- SUNY at Buffalo used a modified version of CPascaL to

implement MICROS [Wittie 793 a distributed operating

system for MICRONET a network of distributed LSI-11's.

Modification to CPascal are currently being implemented

at SUNY in Buffalo to support dynamic tasking and dynamic

memory management. SUNY at Stony Brook has also modified

CPascaL to support dynamic resource management

[Silberschatz 77).

- The University of Berlin developed a Multi-User System In

Concurrent Pascal (MUSIC) CGraef 793 with their version

of CPascaL.

- The University of Manchester U.K. has implemented a version
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of CPascaL on a CTL Modular One machine tPowelL 79).

They plan to use it for a large multimicroprocessor

system. Provisions for separate compilation have been

proposed at the University of Manchester.

- Lund Institute of Technology of Lund, Sweden has implemented

a system which used the RT-11 Linker to link CPascal

programs with code produced by the compiler for

sequential Pascal from Oregon Minicomputer Software Inc.

(OMSI) CMattsson 80].

- Work supported by the Science Research Council (UK) at -

Newcastle University has been done to modify the

interpreter to improve the fault-tolerant characteristics

of CPascaL [Shrivastava 79).

Readiness For Use

ALthough the compiler and kernel can be purchased from the

University of Colorado, Enertec Inc. in Landsdale, PA, and

probably others Listed above, CPascaL was not specifically

designed to be used in production systems of the magnitude of a

DDP BMD application. It might be a reasonable choice as an

interim Language while a more suitable one is being developed.
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7.4.2. ModuLa

Modula, a Language for modular multiprogramming developed by

[Wirth 773, has features to support concurrent processing,

encapsulation, and well-defined intertask communication and

synchronization primitives. Like CPascal, Modula aims to provide

a reliable high Level language for operating system and process

control type programming. A primary consideration of Wirth was

to define a Language which could be implemented efficiently.

General Language Features

Most of the sequential programming facilities of Modula have

been adopted from Pascal, notably the concepts of data types and

structures. Every Modula program is made of two components: the

data definitions (declarations) and the algorithmic actions to be

performed on the data (statements). Modula is a block structured

Language, where a block is a textual unit usually consisting of

declarations and statements. Objects to be declared are

constants, data types, data structures, variables, procedures,

modules, and processes. Procedures and modules themselves

consist of blocks. Hence blocks are defined recursiveLy and can

be nested. The Language does not include any pointers.

As noted in the section on CPascal, a good sequential

Language is the basis of a good concurrent programming Language.

The following is a List of Modula facilities for sequential

programming.

Declarations:

- Constant DecLaration - associates an identifer with a

constant. -.
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- Type Declaration - defines the data types in terms of basic,

implicitly defined, or previously declared types.

- Basic types are:

- integer,

- Boolean,

- char, and

- bits, defined to be an array [word length -1) of

Boolean.

- Enumeration - lists identifiers that denote values

constituting a data type.

- Array Structure - consists of a number of components which

are alL of the same component type. Each component is V

identified by a number of indices.

- Record - structure consisting of a number of components,

called record fields.

- Variable Declaration - associates a unique name with and

reserves memory for a fixed data type.

- Expression - specifies the rules for evaluating the value of

the operands being operated upon by the operators in the

expression.

Statements:

- Assignment Statement - assigns the value of an expression to

a variable.

- Procedure Call - denotes the execution of the specified

procedure.

- Statement Sequence - is a sequence of statements separated

by semicolons.

- If Statement - specifies conditional execution of actions

depending on the value of BooLean expressions.
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- Case Statement - specifies the selective execution of a

statement depending on the vaLue of an expression.

- While Statement - specifies the repeated execution of a

statement sequence depending on the value of a Boolean

expression. The expression is evaluated before the first

and after each execution of the statement sequence.

- Repeat Statement - specifies the repeated execution of a

statement sequence depending on the value of a Boolean

expression, but the expression is evaluated after each

execution of the statement sequence.

- Loop statement - specifies the repeated execution of

statement sequences. The repetition can be terminated

depending of the value of a Boolean expression called the

exit expression.

- With Statement - specifies a statement sequence to be

executed with a record variable.

- Procedure - declaration consists of a procedure heading and

a block containing the declarations and statements of the

procedure. Standard procedures are:

- inc(x,n) = x:=x+n

- dec(x,n) = x:=x-n

- inc(x) = x:=x+l

- dec(x) = x:=x-1

- halt = terminates the entire program

- Function - is a procedure which returns a value. Standard

functions are:

- off(bl,b2) = bl and b2 = [I (bl,b2 of type bits)

- off(b) = b = [I

- among (i,b) b[i] (b is a bit expression)
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- Low (a) = low index bound of array a

- high (a) = high index bound of array a

- adr (v) = address of variable v

- size (v) = size of variable v

- integer (x) = ordinal of x in the set of values

Defined by type of x

- char (x) = character with ordinal x

- Module - defines the primary unit of encapsulation for a

Modula program. The use-list specifies imported

variables and the define-list those which are exported.

Concurrent Language Features

Modula handles I/O and other machine dependent details such

as "device processes (or drivers)" where as CPascal relies on the

kernel, a 4k run-time support package, to handle the machine

dependent details. TRW has developed a version of CPascal

similar to Modula in which the user writes the device drivers.

This Section defines the machine dependent and other facilities

provided by Modula to express the concurrent execution of several

program parts. The process, interface module, and the signals

provide the basic features for concurrent execution, mutual

exclusion, and synchronization.

- Process - describes a sequential algorithm intended to be

executed concurrently with other processes. No

assumption is made about the speed of execution of

processes, except that this speed is greater than zero.

Processes cannot be nested or be Local to procedures.

- interface module - is the facility which provides mutual
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exclusion of access to common objects. Although similar

to the monitor of CPascal, the interface module allows

more than one process to be in a critical section,

provided that all but one are either waiting for a signal

or sending a signal.

- Signal - is similar to the monitor queues of a CPascal

program. Wait, send, and test are the only operations

that can be applied to a signal.

- Device module - an interface module that interfaces one or

more device drivers (i.e. processes) with 'regular'

processes. They, and only they, may contain a statement

denoted by the identifer doio which enables I/0. While

executing this statement, the process relinquishes

exclusive access to the module's variables. V

- Device register - serves to introduce the interface

register's need to communicate with peripheral devices.

Environment

We have no information on either the program development or

the run-time environments of ModuLa.

Performance

We have no information on the performance of a Modula

program.

Experience in Usage

ModuLa has been used by Ford Aerospace and Communications

Corporation for experiments with their Kernel Secure Operating

System [McCauley and Drongowski 793.

In 1977, CORADCOM used Modula in the design and
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implementation of a representative system. The project concluded

with all of the representative system designed using only Modula.

Modula turned out to be an important asset during the system

design phase. The system also served to illustrate a potential

for a significant compression in software size which will have an

impact on the software maintenance func .on.

Readiness for use

Although it has been used in several efforts, Modula as well

as CPascal, was designed as an experiment to illustrate a

concept. Therefore, Modula may Lack the necessary support to be

seriously considered for a project of the magnitude of a DDP BMD

effort.
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7.4.3. Concurrent SP/k

The University of Toronto defined a series of subsets of

PL/I named SP/k, with SP/7 being the most recent one. These

Languages were originally defined as teaching tools, but have

since then been distributed to other universities and

institutions and seem to be weLL-accepted. The need for

concurrent features in a programming language Led to further

extension of SP/k series. Concurrent features were added to form

the Concurrent Sp/k (CSP/k) Language.

Concurrent Language Features

The concurrent features of CSP/k are:

1) Processes, reentrant procedures;

2) Monitors, entries;

3) Condition variables,signaLing and waiting;

4) The busy statement, simulation.

The terms here are used in a sense that is compatible with those

in Concurrent Pascal.

Readiness for Use

SP/k was implemented on the IBM 360/370, Digital Equipment

POP-11, and UNIVAC 9030 computers. CSP/k has been implemented so

far on IBM 360/370. The compiler was written in the high-level

systems Language SUE and shows that in this case concurrent

features have not cost much in terms of performance. Code

produced from CSP/k runs only 0.3% slower per process than code

from SP/k. The addition of concurrent features to the SP/k
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compiler required only about six weeks of programming effort.

Environment

Since CSP/k runs on the IBM 360/370 series of machines, all

the software support tools that are available on these machines

should be available to CSP/k users.

Performance

Use of CSP/k at the University of Toronto in connection with

the Z7 operating system projects showed that runs of ten

processes and almost one million executed CSP/k statements have

required about two minutes of IBM 370/165-I CPU time. The

compiler was almost error-free from the beginning.

Experience in Usage

So far CSP/k has been used as a teaching tool and has been

applied to operating system development. The compiler, however,

is past the experimental phase and is being distributed to anyone

interested.

Conduciveness to Good Software Engineering

PL/I has been shown to e quite conducive to good

engineering principles such as structured programming. CSP/k,

being PL/I based, has good control structures that will allow the

practice of Levels of abstraction, well-defined interfaces, and

more-easily verifiable programs. The compiler was also designed

to have good error handling and recovery capabilities in that the

generated code will automatically recover from a large number of

errors.
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7.4.4. Ada

Ada [Ichbiah 793, a modern algorithmic Language which

provides good control structures and precise control over the

representation of data, is one of the first major efforts to

include real-time programming facilities for modelling parallel

tasks, handling exceptions, providing access to system dependent

parameters, and encapsulation facilities with well defined

interfaces to support good programming techniques. The language

was designed with three overriding concerns:

- a recognition of the importance of program reliability

and maintenance,

- a concern for programming as a human activity, and

- efficiency.

A further discussion of these points can be found in the

"Preliminary Ada Reference Manual" [Ichbiah 79).

General Language Features

Ada has language features for sequential programming similar

to those provided by CPascaL and Modula. In addition Ada

supports fixed and floating point real numbers as a basic data

type. The string, a one dimensional array of type character, is

also a basic data type. Pointers or access types are supported

by the language. Ada control statements differ from CPascal in

that they do not supply a repeat statement; however, they do

supply a return statement. The addition of a return will

certainly help to make programs more readable. Other features

include short circuit conditions and assert statements. The

short circuit provides a method of skipping past the evaluation

of the rest of a string of conditions upon evaluating one which
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is not true. The assert statement can be used to help insure

that execution will not continue beyond the assert statement

unless the stated assertion is true. Overloading, the ability of

defining an additional meaning for an operator, is one of the

more controversial features of the Language.

As the language is intended for the production of large

real-time embedded systems, it also supports good I/0 and

computational facilities. The package and task modules provide

the basic unit of encapsulation. The interface between modules

is explicitly defined and side effects are eliminated because all

parameters must be defined as in, out, or in out. Defined as

part of the language are facilities usually supplied by the

operating system for Linking separately compiled modules. The

explicit definition of the interface units in an Ada module will

be useful in enabling the design and implementation of good

support tools. In particular, consistency checkers and

intermodule type checking will be relatively easy in an Ada

programming development facility.

Concurrent Language Features

An Ada TASK is a module that may operate in parallel with

other Ada TASKs. A TASK consists of two parts: a TASK

specification and the TASK body. The specification can specify

either a single TASK or a family of similar tasks. The

specifications consist of declarations specifying the interface

between the task and other external units. Entry declarations in

the visible specification part define communication between tasks

in mutual exclusion. Declarations of variable and modules are

not allowed in the visible part. The t3sk body specifies the
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execution of a task. It may contain accept and select statements

as well as Local entry declarations.

Tasking as defined in the Ada Reference Manual is expected

to be modified in a new version of Ada due to be released on July

15, 1980. As we understand the changes, the concept of families

of tasks will be replaced by allowing a task to be referred to by

an access variable. While the proposed changes introduce some

new problems, we feel that the capability of creating new tasks

dynamically at run time allows for more realistic modeling of

typical BMD applications.

Task communication and synchronization is achieved via the

ENTRY declarations and the ACCEPT statements of an Ada task.

Mutual exclusion to shared data is guaranteed during the

execution of an accept statement in a task. The SELECT statement

allows a selective wait on one or more alternatives. The DELAY

statement provides a method for suspending the task for at Least

a given time interval.

Overall, the tasking facility of Ada appears to be

sufficient to provide a method of specifying concurrent

processing and the necessary communication and synchronization

primitives to model a BMD DDP application.

Program Development Environment

The DoD is currently expending considerable effort to define

a suitable program development environment for Ada. The Ada

Language Environment (ALE) consists of the Ada Language

Integrated Computer Environment (ALICE) plus additional policy

and procedural issues. The following have been identified as
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desired characteristics of ALICE:

1. SimpLicity - The structure of the environment follows a

natural simple overall concept.

2. Responsiveness - The environment provides a coordinated

complete set of useful tools.

3. Open-endedness - The environment is adaptable to updates,

improvements, and changes.

4. ImplementabiLity - The programs which form the environment

are developed completely in Ada.

5. Commonality - The environment is maintained as part of a

Library available to all users.

6. Efficiency - The orograms in the environment execute

efficiently and utilize reasonable resources on a variety of

machines.

7. Uniformity of Protocol - Communication between users and

tools is uniform and involve a minimal number of different

concepts and language conventions.

8. Consistency of Documentation - The ability to develop, test,

and maintain environment tools is part of the environment.

9. Ease of Learning and Use - This characteristic should be

inherent in the structured, coherent, and consistent design

of the environment.

10. Flexibility of Use - The environment is appropriate for both

batch and interactive processing.
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For a more complete description of the Ada program

development environment see Section 8.

Run-Time Environment

As the run time environment of Ada is still being defined,

it has been difficult to find much information in this area.

However, as mentioned before, the development of microcodable

machines and other sophisticated hardware under the support of

programs like VHSIC will no doubt have a strong impact on the

run-time environment of Ada programs. Implementations of the

Nebula machine will simplify the compilers and the run-time

support needed for Ada or any of the other languages or operating

systems which support concurrent processing.

We are aware of one effort where C, the UNIX assembly

language, is being used to write a run-time system for Ada. Wand

and Holden of the University of York in York, England are working

on a run-time system for Ada that will run on the PDP-11/LSI-11

range of computers.

Experience in Usage

There is a translator, an interpreter, and several compilers

for a subset of the Ada language available for experimental use.

The test translator for syntax analysis is available via the

ARPA, TELA, and TYME nets. It runs under the Multex system at

MIT.

There are two compiler efforts at CMU: the TCOL Ada IBrosgol

80), and the Ada Charet effort. The TCOL Ada project is in

conjunction with the Production Quality Compiler Compiler (PQCC)
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[Newcomer 793. The TCOL project is a joint effort between CMU

and Intermetrics,Inc. The intention is to define an intermediate

representation for the preliminary Ada language. Intermediate

representations can be used for many applications:

- language-oriented editing,

- pretty printing

- generation of verification conditions,

- direct interpretation (as in a special debugging

system),

- automatic test-condition generation,

- a common representation for family of retargetable

compilers, and

- as a representation within a single compiler.

The TCOL Ada being defined at CMU converts a Ada program to

a directed graph structure. This intermediate representation has

been defined specifically for Ada and for post-semantic

processing. It contains all (and only) the information needed by

the "back end" of a compiler and by similar applications that

reouire that semantic analysis have already been done.

The Ada Charet effort is aimed at producing a compiler for a

subset of Ada. The object was to identify some of the

implementation problems in Ada. They have a BLISS implementation

of a subset of Ada running on a PDP-1O machine with a TOPS-10

operating system. The front end parser and analyzer, written in

Simula and borrowed from Intermetrics, also runs on the PDP-1O

but takes a large amount of space. The Charet effort does not

support tasking.

The Courant Institute at New York University has written an
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interpreter for Ada in SETL (an Execution Specification

Language). This was aimed at identifying implementation problems

with regard to the TASKing facilities of Ada. It runs on a VAX

with a VMS operating system.

Readiness For Use

A revised language reference is expected to be released on

July 15th. In particular, the definition of TASKING will be

changed significantly. There will be a TYPE TASK, therefore one

can now create TASKs dynamically at run-time.

SofTech was awarded the contract for the Army compiler to be

completed in 1982.

Although considerable time and money is being spent on the

Ada project, it is not quite ready for use. However, in our

estimation, Ada wilt in the near future provide the most

satisfactory vehicle for impLementing large sophisticated

embedded systems of the magnitude required by a DDP BMD

application.

1
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7.5. Track Management Examples

Sample programs were coded to obtain some hands-on

experience in coding in a concurrent Language and to better

understand the languages. We have included sample concurrent

programs coded in Ada and Concurrent Pascal. The example coded

in Ada is taken from the "Rationale for the Design of the ADA

Programming Language" [Ichbiah 79]. We have tried to represent

the same example as it might be coded in CPascal.

The CPascat example is considerably Longer, but its

structure seems to be better. The communication between the

system components and the tight encapsulation seems to be more

apparent in the CPascal program. The most difficult part was the

identification of functions which needed to be part of a monitor

and those which best belonged in one or another of the concurrent

processes.

It is our understanding that the tasking fa-cilities of Ada

are to be modified in such a way as to support tasking as a typed

variable. This change would permit dynamic task creation and

deletion. The ability to create and delete tasks dynamically

would have been useful in this example. The coding in both Ada

and CPascal required an array of track tasks to be created. This

was somewhat artificial.

The realization that the system might actually be

implemented as a multiprocess system caused some conceptual

problems. In retrospect however, we realize the problems were a

result of thinking in languages which can not provide the

necessary mutual exclusion. This leads to the conclusion that
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retraining of programmers wilL be necessary before the full

advantage of a Language powerfuL enough to support concurrent

processing can be realized.
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7.5.1. Ada Example

The following is an example of an Ada program taken from the

Rationale for the Design of the Ada Programming Language manual

page 11-25. The example shows the use of packages and tasks to

realize a complex real-time system, such as radar surveillance.

The track-management package introduces the abstract notion of a

track. Several tracks can coexist. A current position and a

current speed vector in a two-dimensional space are associated

with each track. The position is updated regularly from the

value of the speed. Both the position and speed can be modified

externally, or examined. The restrictions are that certain

values should not be read while they are being changed. We thus

have a classical reader-writer problem.

The track management package is the main or controlling

program. Declared within the trackmanager are two types of

tasks, a single track control task and 256 track tasks. The main

purpose of the track control task is to manage the creation and

killing of new track tasks. The table track-name indicates, for

each track, the unique name currently assigned to it. This table

can be accessed via the track control task and each of the 256

track tasks.
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ADA EXAMPLE OF A RADAR TRACK MANAGEMENT PACKAGE

PACKAGE track management IS
TYPE trackTnfo IS

RECORD
x, y :miles; -global type
vx, vy :miles-per-second; -global type
t : time;

END RECORD;

TYPE track id IS PRIVATE;

FUNCTION create track (init IN track info) RETURN track -d
PROCEDURE kill t~ack (t : IN track idT;
FUNCTION read track (t : IN track id) RETURN track info;
PROCEDURE changetrack (t : IN track ik; d: IN track info);

no more tracks, illegalTtrack EXCEPTION;
PRIVATE

max track : CONSTANT integer := 512;
SUBTYPE track_range IS integer RANGE 0 .. max-track;
SUBTYPE name type IS long_integer;
TYPE track id IS

RECORD
index : track range
unique name nametype;

END RECORD;
END trackmanagement;

PACKAGE BODY track management IS
null track : CONSTANT track id := (0, 0);
track name : ARRAY (1 max track) OF nametype :=(1..maxtrack => 0);
-- this is a table indicating, for each track,the unique name currentl,

assigned to it.
Lastname nametype 0; -- the last unique-name used.

PROCEDURE check-track (t : IN track id);

TASK track (1..max track) IS
PROCEDURE readTi OUT track info);
ENTRY change(i : IN track info);
ENTRY initialize(i IN track-info);
ENTRY kill;

END track;

TASK track control IS
ENTRY criate track(id OUT track id);
ENTRY kill tFack(t IN track id);

END track control;

PROCEDURE check track (t IN track id)IS
-- to ensure the validity of a track value:
-- * it has a positive index,
-- * it has the same unique name as that known to the system,
-- * it is still active.

BEGIN
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IF t.index - 0
OR ELSE track name(t.index) / t.uniquename
OR ELSE NO track(t.index)active THENI RAISE illegal_track;

END IF;
END checktrack;

FUNCTION create track (init IN track-info) RETURN trackid IS
new-track track id;

BEGIN
track controL.create track(new track);
INITIrTE track(new tFack.indexT;
track(new track.index).initiaLize(init);
RETURN nei track;

END create-track;

PROCEDURE kill track(t IN track id) IS
BEGIN

check track(t);
trackTt.index).kiLl;
track control.kill track(t);

END kill track;

FUNCTION read track (t :IN track id) RETURN track info IS
i :track-info;

BEGIN
check track(t);
track~t.index).read(1);
RETURN i;

EXCEPTION
WHEN tasking error => RAISE illegaltrack;

END read track;-

PROCEDURE change track(t);
BEGIN

check track(t);
tracket.index) change(d);

EXCEPTION
WHEN tasking error => RAISE illegaltrack;

END change_track;

TASK BODY track IS
data : track info;
readers : integer 0;
ENTRY start_read;
ENTRY stop_read;

PROCEDURE read (1 OUT track info) IS
BEGIN

startread;
i :z data;
stop read;

END read;

PROCEDURE update position IS
new time : tTme :=system clock;
delta time : time:= new time - data.t;

BEGIN
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data.x :z data.x + delta time*data.vx;
data.y := data.y + delta-time*data.vy;
data.t :z new-time;

END update_position;

BEGIN -- body of track;
ACCEPT initialize (i IN track info) DO
data :=i;

END initialize;
updateposition;

LOOP
SELECT

WHEN change count = 0 AND kill'count = 0 =>
ACCEPT start_ read;
readers := readers + 1;

OR
WHEN readers > 0 =>

ACCEPT stop read;
readers := readers - 1;

OR
WHEN readers = 0 AND kilL'count = 0 =>

ACCEPT change (i IN track-info) DO
data := i; I

END change;
update-position;

OR
ACCEPT kill;
EXIT;

OR

DELAY 0.10*seconds;
updateposition;

END SELECT;
END LOOP;

END track;

TASK BODY track control IS
FUNCTION fiRe track RETURN track-range IS
BEGIN

FOR i IN 1 .. max track LOOP
IF track name (iT = 0 THEN

RETURN i;
END IF;

END LOOP;
RAISE no more tracks;

END fine_track;

BEGIN -- body of track control
LOOP

BEGIN
SELECT

ACCEPT create track(id OUT track id) DO
id.index find track; 
IF last name = name type' last THEN

last name : 1;
ELSE

Last name := last name + 1;
Pn IF;
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m track name(id.index) := Last name;
id.unTquename := lastname;-

END createtrack;
OR

ACCEPT kill track(t IN track id) DO
track name(t) 0;

END kill_track;
END SELECT;

EXCEPTION
WHEN no more tracks => NULL;

END;
END LOOP;

END track control;

BEGIN --body of track-management
INITIATE track control;

END trackmanagement;

Tracks are manipulated by external agents through the

operations CREATETRACK (to start a new track, with an initial

value), READTRACK (to obtain the current position on a track)

CHANGE TRACK (to modify track data) and KILL TRACK (to release

the track).

ALL tracks are independent. This is achieved by associating

a particular task from a family to a newly created track. The

global management of a pool of tasks is achieved by the TRACK-

CONTROL task. Note that the TRACK tasks act as servers, in the

sense that an activation of one task corresponds to one track,

but the same task can represent different tracks in different

successive activations.

In order to preserve some integrity in the way tracks are

used (for example, to ensure that a reference to a track is not

that of an obsolete activation), a unique name is associated with

each active track. The unique name is a Long integer which is

incremented at each track creation, and recorded in the track

identification. It acts as a sort of password,in that, for each

active track, the system keeps the unique name currently
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associated to it in the array TRACK NAME. This one is checked

against that contained in the track identification. Using a

LONG INTEGER for unique names should guarantee that the same name

is not reused before a reasonabLe period of time.

T



1 7.5.2. Concurrent Pascal Example

UIn CPascaL the trackmanagement package could appear as a

track control process, designed as follows. The data of type

track info is defined within a monitor as it represents

I information which must be accessed by both the track management

process and by the track process. Likewise, the 256 element

Iarray track-name would be defined within a monitor as it must be

accessed by both the track management and by the track control

process.

13

I
I
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CONCURRENT PASCAL EXAMPLE OF A RADAR TRACK MANAGEMENT PROCESS

FIFO CLASS

TYPE fifo =

CLASS(Limit: integer);

VAR head, tail, Length: integer;

FUNCTION ENTRY arrivaL: integer;
BEGIN

arrival: = taiL;
tail:= tail MOD Limit + 1;
Length:= Length + 1;

END;

FUNCTION ENTRY departure: integer;
BEGIN

departure:= head;
head:= head MOD Limit + 1;
Length:= Length -1;

END;

FUNCTION ENTRY empty: boolean;
BEGIN empty:= (length = 0) END;

FUNCTION ENTRY full: boolean;
BEGIN full:= Length = Limit) END;

BEGIN head:= 1; tail:= 1; Length:= 0 END;
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3TRACK READ CLASS
* *** ** *** *** ***** *** **** ***************

TYPE trackinfo RECORD
x, y :miLes
vx, vy :milesper sec;
t :time;j END;

TYPE track read =

CLASS (trackdata: ind trackdata);

VAR dataptr:'track_ info;

PROCEDURE ENTRY read (data: track info);
BEGIN

track data.request read (data ptr);
data:'- dataptr
trackdate.reLease read (date_ptr);

END;

BEGIN END;
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IND TRACK DATA MONITOR

(* I have fudged CPascal to more closely model the example.
CPascaL as defined by Brinch Hansen does not support pointer
types. So the reading of shared data would have to be done
in the monitor, thus locking out other readers. This is very
restrictive and several of the CPascal varients support
pointers. *)

CONT processcount = # of processes with access to an and trackdata;
TYPE processqueue = ARRAYE1..processcountl OF queue;

TYPE track-info a RECORD
x,y :miles

vx, vy :miles per sec;
t :time;

END;

TYPE ind track data =
MONITOR

VAR my data: ^track info;
alive, reader, chingepending: boolean;
read-count: integer;

change q, read q: processqueue;
next cwange, next read: fifo;

FUNCTION ENTRY active: boolean;
BEGIN

active:= alive;
END;

PROCEDURE ENTRY activate (data: track info);

BEGIN
readcount:= 0;
reader:= false;

change pending:= false;
INIT next change, next_read;
NEW(my_data);
mydata':= data;

alive:= true;
END;

PROCEDURE ENTRY kill (data: track info);
BEGIN

IF alive THEN
BEGIN

alive:= false;
WHILE change pending

DO continue(change_qtnextchange.departure));
WHILE NOT read qCnext read.emptyl

DO continue(read_qEnext_ read.departure]);
END;

END;
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PROCEDURE ENTRY change (data: track_ info; ok: booLean);
BEGIN

IF alive THEN
BEGIN

change pending:x true;
IF reaUer THEN deLay(change_qlnext_ change.arrivaL]);
my -data :z data;
IF change qrnext_ change.empty) THEN

change 'pending:. false
ELSE

continue(ch ange qrnext_ change.departure));
IF NOT read qEnexTf changei.empty) THEN

continue(CFead-q Wext_ read.departurej);
END;

END;

PROCEDURE ENTRY request_ read (data-ptr: ^track info);
BEGIN

IF change pending AND alive THEN
deLay(riad-qlnext read.arrivaL));

ELSE
IF alive THEN

BEGIN
readers:z true;
read count:= read count + 1;
data-ptr:= my data;

END;
END;

PROCEDURE ENTRY release-read (data ptr: 'track-info);
BEGIN

data ptr:= null;
IF riad count > 0 THEN

read count:= read count -1;
IF read count = 0 THEN

BEGIN
reader:z false;
If change_pending THEN continue(change_q~next change.departurej);

END;
END;

BEGIN
aLive:z false;
my_data:. niL;

END;
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**. .******************************

TRACKER PROCESS
*********** ************************

TYPE track info = RECORD
x, y :miles
vx, vy :milesper sec;
t :time;

END;

TYPE tracker=
PROCESS (track data:ind track data; clock: system clock);

(* The track process assumes the existence of a system_clock monitor

with entries time, alarm set, wake. The ability to assume these

capabilities is an illustration of how step wise refinement can be

used when developing a program top down. *)

VAR new-time, delta time: time; data: track-info;
track: track read;

PROCEDURE updateposition;

BEGIN
data.x:= data.x + delta time * data.vx;
data.y:z data.y + delta time * data.vy;
data.t:= new-time;

END;

PROCEDURE initialize;
BEGIN

-- code to initialize the clock

INIT track (track-data);
END;

BEGIN
initialize;
C YCLE

new time:z clock.time;
delta time:z new time - data.t;
IF trick data.active THEN

BEGIN
track.read(data);
update position;
track data.change(data);

END;
clock.alarm set(new time + 0.10 * seconds);
clock.wake;

END;
END;
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TRACKCONTROL MONITOR

TYPE track control =
MONITOR

CONST track max = 512;
TYPE track range = 1..trackmax OF integer;

CONST processcount = # of processes with access
TYPE processqueue = ARRAYE1..processcount] OF queue;

TYPE track id = RECORD
index: track range;
unique name: integer;

END;

VAR i, Lastname: integer; found: boolean;
q: processqueue; next: fifo; id: track-id;
track-name: ARRAY[track_range) OF integer;

PROCEDURE find track;
VAR i: integer;

BEGIN
found:= false;
i:= 1;
REPEAT

IF track name(i) = 0 THEN
BEGIN

id.index:= i;
found:= true;

END
ELSE

if i <> max track THEN i:= i + 1;
UNTIL found OR T > max track;

END;

PROCEDURE ENTRY create track(VAR t: track id);
BEGIN

find track;
IF NOT found THEN delay(qEnext.arrival])
last name = name MOD name limit + 1;
trac kname(id.index):= lait name;
id.uniquename:= lastname;
t:z id;

END;

PROCEDURE ENTRY kill track(t: track id)
BEGIN

IF next.empty THEN
track name(t.index):= 0;

ELSE
id.index:= t.index;
continue(qnext.departure));
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END;

BEGIN
Last name:= 0;
found:= false;
INIT next (processcount);
FOR i:= 1 to track max DO

track nameti3:= 7;
END;
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I
TRACK MANAGER PROCESS

TYPE track manager =
PROCESS(controler: track control; track:

ARRAY Etrack_range] OF ind_trackdata);

(* Param is a variable length parameter list supported by the
kerneL of the SOLO operating system. The system supporting the

track manager process would need to use a similar technique. *)

VAR track name:
ARRAYCtrackrange) OF trackid.uniquename; trck: track read;

PROGRAM request(VAR param: arglist; t: track id);
ENTRY newtrack, killtrack, readtrack, change_track;

FUNCTION track ok (t: track id): boolean;
BEGIN

IF t.index = 0 OR track name(t.index) <> t.uniquename THEN
track ok:= false

ELSE
track ok:= true;

END;

FUNCTION ENTRY new-track (data: track info): track id;
BEGIN

controler.create track(new track);
track name[new track.index7:= new track.uniquename;
track-new trac .index].activate(dita);

END;

PROCEDURE ENTRY kill track(t: track id);
BEGIN

IF trackok (t) THEN
BEGIN

track namett.index]:= 0;
trackEt.index].ki LL;

controler.kill track(t);
END

END;

FUNCTION ENTRY read-data (t: track id): track info
BEGIN

IF track ok(t) THEN
BEGIN

trck.read (read-data);
END;

END;

PROCEDURE ENTRY change_track(t: track_id; d: track-info);
BEGIN

IF track ok (t) THEN
trackET).change(d);

END;
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PROCEDURE initialize;

VAR param: arglist; result: resulttype;

BEGIN
-- any code necessary for initialization

FOR i:= 1 to track max INIT trck ????
call (t io 1, param, result)

(* The call to io blocks the track manager process until a
request is made to trackmanager's enternal program request.
The type of request will be available in the argument list,
param. *)

request (param, t);
END;

BEGIN initialize END;
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INITIAL PROCESS

II VAindex: integer;
controter: track_ control;
track data: ARRAY [track_ range) OF ind-track-data;
tracks: ARRAY [track_ range) OF tracker;
manager: track-manager;

BEGIN
INIT controLer,
FOR index:= 1 to track-max

BEGIN
INIT track data [index];
INIT track-i [index] (track-data Cindlex));

END;
INIT manager(controLer, track_data);

END~
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7.6. Implementation Language Summary

In 1975 the High Order Language Working Group (HOLWG) was

formed to establish a single high order language computer

programming language appropriate for DoD embedded computer

systems. One of the first tasks was to analyze existing

languages to determine if one of them could satisfy the

previously stated requirements. An in-depth analysis of 23

existing languages was conducted and the conclusion was that no

language satisfied the requirements well enough to serve as the

common language. However, rather than invent a new language, it

was agreed to use an existing language as a starting point.

Pascal, PL/1, and Algol were offered as base language to the

design teams. Four competitive preliminary language designs were

initiated in August 1977. All four of the winning contractors

chose PASCAL for their baseline. Eventually, the Honeywell

"green" design was chosen as the final selection and is now know

as Ada.

Given the time and money available for the DOP BMD study, it

was impossible to complete an extensive evaluation of concurrent

languages or even a subset. Given this constraint, our approach

was to identify the requirements for a DDP BMD implementation

Language. We then considered four most promising concurrent

Languages to determine if they could support these requirements.

Three of the four were developed in a university setting.

Consequently, they have not received the type of support which

would be necessary in order for an implementationlanguage to be

used in a project of the magnitute of a DOP BMD application.

However, the study of the Languages and projects which have been
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undertaken to improve the Languages have served to illustrate the

concepts that a DDP BMD implementation Language should support.I
Therefore, our approach to Ada was to determine if Ada

provided facilities to support the required concepts. It appears

I that Ada does provide support for the required concepts. The

unfortunate fact remains that Ada is still being modified. The

Jlack of production-quality compilers will also be a problem for

the next two years. Thus, the choice of an implementation

Language for a DDP BMD implementation language must be a

compromise.

The project could be implemented in a Language, such as Fortran,

which has been used and tested over time, has good compilers and

good support tools. But Fortran does not support many of the

features required by the application. Or the project could be

implemented in one of the experimental languages, such as

CPascal, variations of which do support the required features.

However, the language lacks support tools and may even lack

vendor support. Finally, the application could be implemented in

Ada, realizing that the Language and support tools are being

developed concurrently with the application program. Of the

three choices, we recommend the last. Even though we realize the

pitfalls of such a situation, the advantage of having tools which

are designed to support the features characteristic of the

application and the advantage of programming in a language which

has the backing of the DoD will offset many of the problems. Our

second choice would be to further investigate the work being done

on CPascal at TRW. This choice has the advantage of developing

the application in a Language having many of the features
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required by a DDP BMD application,. And as Pascal was the

baseline in the design of Ada, many of the features provided by

CPascal will be similar to those eventually provided by Ada.
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SECTION 8

3 SOFTWARE DEVELOPMENT ENVIRONMENT

8. SOFTWARE DEVELOPMENT ENVIRONMENT (SDE)

Important to software developers, besides a programming

Language suitable for the application, is the environment

surrounding the Language. The need for tools that can ease the

jobs of program entry, maintenance of program modules, system

construction, debugging have Long been recognized as important.

One important work that has evolved from this realization is the

Programmer's Workbench tIvie 77) developed at Bell Laboratories.

The Programmer's Workbench is a facility which provides an

environment conducive to the development and maintenance of

software to run on computers other than those on which they are

being developed, i.e. target systems.

8.1. why A SDE?

The motivating factors for the development of such a

facility are many. Following are several suggested by Ivie.

First, the development of a unified set of tools for one machine

will be less expensive than the development of the same or

similar tools for multiple target systems. Second, the workbench

approach provides a more nearly uniform programming environment

even across projects. This more uniform environment can reduce

training and documentation costs, facilitate the development of

standard policies and procedures, and enhance the productivity of

programmers. The transition to new equipment provides another

opportunity for realizing the benefits of program development
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facility which is distinct from the target system. The upgrading

of the host can be scheduled independently of any changes or

improvements to the development facility. In many cases needs of

the developer conflict with those of the user. A separate and

distinct program development facility makes it possible to

satisfy both. A feed back loop from the target system to the

development facility can facilitate the validation and testing of

the system. The hardware configuration necessary to support a

program development system should be much simpler and less

cumbersome than those typically required in a large general

purpose computer suited to application programs. Finally, the

separate workbench facility encourages the development of machine

independent programming tools, it helps to focus the attention on

the importance of the programming environment, and should provide

a stimulus for the integration of programming tools.

8.2. Components of a SDE

A review of the Proceedings of the Ada Environment Workshop,

Nov 27-29, 1979 provides a good overview of the current state of

program development facilities. It also defines desirable

characteristics of a software development environment. The

software development environment should:

- have a simple overall structure

- provide a coordinated complete set of useful tools

- be adaptable to updates, improvements, and changes

- be implemented in the language in which software is to

be developed

- be readily available to all users

- be efficient
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- be uniform

S- enforce consistency of documentation

- be easy to learn and use

- be appropriate for both batch and interactive

processing

The environment should include a wide variety of

capabilities to support software development during all phases of

the life cycle. In addition to being easy to use, the

environment should provide motivation to "do it correctly". The

capabilities of the environment can be implemented as an

integrated set of general purpose, development, system

integration, and management tools. The following are some of the

more desirable capabilities.

General purpose tools should support:

- text editing

- document preparation

- communication

- information management

Software development tools should support:

- the entering of syntactically correct programs

- program translation

- program execution

- program debugging (preferable at the source level)

System integration and composition tools should support:

- a method to compose systems

- type checking across module boundaries

- version control and version histories
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- a general system library

Management toots should provide:

- facilities for system documentation

- facilities for system modification requests and

histories

- control of the state of the system

The development of Ada seems to be providing strong

motivation to define environment tools in terms of support for an

Ada programming environment, a notable exception is TOOLPACK: An

Environment for Numerical Software Development being developed at

the Argonne National Laboratory for the U.S. Department of

Energy [Osterweil 79]. TOOLPACK is intended to provide a

environment suitable for the development of structured Fortran

programs.

An overwhelming majority of the program development

facilities have been or are being developed on a Digital

Equipment Machine under the UNIX operating system. The UNIX

Shell program, its pipes, and the tree structured files system

provide a good starting point for the development of a good

interactive program development facility.

8.3. Examples of Environments

8.3.1. Programmer's Workbench

The Programmer's Workbench describes the devlopment

environment at Belt Labs. As of February 1976 there were three

DEC machines in operation at Bell Labs in Piscataway, NJ and one

in use at Murray Hill, NJ. These machines provided the
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development facilities for producing systems to run of their IBM

370s and on the UNIVAC 1110. The five basic components of the

workbench at that time were job submission, module control,

change management, documentation, and test drivers.

8.3.2. Development Support Machine

The Development Support Machine (DSM) [McCauley 793 is a

sophisticated support capability developed at Ford Aerospace and

Communications Corporation (FACC) to reduce the cost and improve

the quality of software. The facility has been implemented on

the Programmer's Workbench/UNIX system. The DSM provides a

common, integrated environment for the specification, design,

coding and documentation of software. Development personnel work

in an on-line environment with DSM. DSM provides a method of

specifing requirements, tracing the requirements, and then

extracting test requirements. DSM has a SPECIAL processor which

was used for the formal specification and verification of the

Kernel Secure Operating System [McCauley and Drangowski 79). DSM

supports an FACC-developed structured English design language

called HDL (for Hierarchical Design Language). The

machine readable design language HDL reduces the need for

expensive flow charting. DSM supports a variety of languages

including Modula. The Source Code Control System (SCCS)

[Rochkind 75) facility of DSM provides for incremental version

maintenance of text. DSM also provides for the construction of

complex software systems, testing, and management support

capabilities. The KSOS project used the compiler-compiler system

(lex and yacc) provided by UNIX to build a simple parser for

Modula which turned out to be important in a large number of the

I
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other tools. Currently, over 16 DSMs are in use on projects

throughout FACC.

8.3.3. MSEF

Microprocessor Software Engineering Facility (MSEF) [Voydock

79] is an integrated set of tools to support the development and

maintenance of microcomputer software. MSEF as developed by

SofTech is hosted on a PDP-11 computer under the UNIX operating

system. The MSEF Change Control Library promotes defining,

updating, and integrating parts of a software configuration,

isolation of user work environments, and version control. MSEF

supports the organized testing of software componets by

associating test scenarios and test results with the components

to be tested. Automatic change logging with a configuration

audit trail is also provided by MSEF.

8.3.4. CSDP

Communications Software Development Package (CSDP)

EAllshouse 79] is a coordinated set of software tools and

methodologies being designed by Computer Science Corporation's

(CSC) Systems Division for Rome Air Development Center. CSDP is

designed to be used on a large mainframe for developing software

for embedded computer systems, which normally do not have

development facilities of their own. The initial application

will be to support communications software developed in the J73/C

dialect of JOVIAL. CSDP will be implemented on the HoneyweLL

6180 under MULTICS and the target will be an Interdata 1/32

configured as a switcing testbed at RADC. CSDP suppLies a user

interface (the SHELL), a tool kit, a tooL manager, and so'tware
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database - the Project Support Library (PSL). The following is a

List of toots and techniques to be available under CSDP:

1) Management Tools - a tool for tracking, the status of a

project, module by module, through design, development,

and testing.

- Configuration Management

- Project Planning and Scheduling

2) Design tools -

- Program Design Language (PDL) analyzers and

formatters

- Design verification, by review, walkthrough, and

checking against requirements.

3) Implementation -

- Compiler and linker Loader

- Debugger, source level oriented

- Structure AnaLyzer

4) Test Tools -

- Test tools to create data and drive systems

- Error reporting systems

5) Maintenance Tools -

- Configuration Manager, coupled to the Project

Support Library

- Change requester mentioned under testing

- Mailbox system

6) General Purpose Tools-

- Text editor

- Report generator and text formatter

- Mailbox system from (5)
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8.3.5. Integrated Software Support System

Integrated Software Support System (ISSS) [Bate and Johnson

79] is part of a continuing Texas Instruments corporate program

to improve engineering productivity and Quality. As most TI

computer system projects are characterized by simultaneous

development of hardware and software, ISSS must support

integrated hardware/software design with special attention paid

to hardware-software tradeoffs. ISSS seeks to take advantage of

modern distributed processing technologies in order to place as

much processing power as possible in the hands of each developer.

Thus, ISSS includes a Programmer's Workstation, an intelligent

keyboard/video display terminal, connected to local processors.

Currently the ISSS supports transportable compilers, language

dependent configuration managers and text editors, multi-tasking

runtime environments and validation tools. Library management

tools and source-code change control are user with interactive

editors. A number of machine-level interactive debugging tools

have been developed to support microprocessor applications.

According to some calculations made by TI a software development

facility 'hosting slightly more than $13,000 which provides a 20%

productivity improvement will pay for the equipment in six

months.

8.3.6. MUST

Multipurpose User-oriented Software Technology (MUST)

[Merilatt 79) is an integrated verification and testing system

being designed by Boeing Computer Services for NASA. MUST is

composed of the three major components: 1) a common, machine

independent, user interface to all elemets of the envi:onment, 2)
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I
a system database which is the repository for every known about a

system from requiremets through object code, and 3) a

comprehensive integrated tool set which emphasizes lifecycle

verification from requirements definition through maintenance.

Currently, the user interface, the front-end processor for the

host language (Hal/S), some target machine code generators, and

an interpretive computer simmulator have been implemented.

8.3.7. MONSTR

MONitor for Software Trouble Reporting (MONSTR) [Cashman 793

is a communication-oriented maintenance system currently being

built at Massachusetts Computer Associates, Inc. MONSTR is a

protocol-eriver system which can constrain project communication

in accordance with the given protocols. MONSTR addresses the

need to coordinate the activities of many people who must

communicate in a variety of ways, pertaining to the status and

history of a software project.

8.3.8. GANDALF

GANDALF lHabermann 79) is a host environment being developed

at Carnegie Mellon University for the development of programming

projects using the Ada language. GANDALF deals with the software

development of a system at three levels:

- Programming issues level: those issues which arrise when a

single programmer takes a program all the way from its

specification to a working version.

- System composition level: the issues which arrise when a

system is built by integrating many programs into one,

- Management level: pertains to issues which arrise when a
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group of persons develops and maintains a system over a

period of time.

The three levels are being addressed by three separate

projects under the GANDALF umbreLLa.

INCREMENTAL PROGRAMMING ENVIRONMENT [Feiler 80)

The process of turning specifications into a working program

consists of two important pieces - the methodology and the tools

cycle. The programming environment tools must enable a

programmer to:

- enter and modify programs

- translate, compile or interpret the programs

- link, load, and execute the programs, and

- debug the programs.

These functions are usually provided by

- the editor

- the compiler or interpreter

- the linker and loader, and

- the debugger.

GANDALF replaces these four tools by two:

- syntax editor, and

- an unparser.

These two tools work together to provide an environment

where the usual process to editing, translating, linking,

loading, and debugging programs does not require the ususal

process of moving among tools to perform the required tasks.

Such a system should serve to reduce the software development
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time. These two tools are now provided for GC, a type-checked

3 variation of C that runs under UNIX operating system on a DEC

VAX.

INTERCOL ETichy 79]!
The system composition environment is concerned with the

integration of many subsystems into a version of a Larger system.

BeLady' "Law of Continuing Change" says that all large software

systems are subject to modification over their entire lifespan.

This leads of problems pertaining to interface control and to

version control. A prototype implementation of the interface

portion of INTERCOL, a language for programming-in-the-large and

describing version control of a system, has been implemented on

the UNIX system at CMU as a part of the GANDALF project.

A system descriptor consists of four parts:

- the provide list,

- the require list,

- the components, and

- the list of composition

An important goal of system construction is the checking of

type information across module boundaries. This is also a goal

of Ada. An environment such as the one provided by GANDALF would

support such a goal.

GANDALF

GANDALF takes a technical approach to creating a management

environment. This environment consists of two parts -- one that
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is responsible for coordinating the state of the system and

another that is responsible for the generation and proliferation

of documentation. The state information portion is called

Software Development Control (SDC) [Notkin and Habermann 78].

SDC is implemented as an extension of UNIX running of a PDP-11.

As part of the evaluation of Ada, the SDC system has been coded

in Ada. The Ada version is not available yet, however, a version

is available for distribution including a user's manual and a

standard UNIX manual for each SDC command. The SDC commands

amount to roughly lk lines of C-code.

SDC supports the development and maintenance of systems by

maintaining modification histories and standard documentation and

by applying tests when source objects are replaced.

8.4. Software Development Environment Summary

The concept of a system development facility and the

introduction of Ada provide the opportunity to define a system

development environment which can revolutionize the industry.

The availability of a language designed for the development of

embedded systems and an integrated set of tools which facilitate

the system development process from the requirements to the test

and maintance phases, can significantly shorten the development

time and therefore reduce the costs.

Given the time and money available, we were unable to

evaluate tools which are being developed for the system

development environment. However, we have identified two of the

more revolutionary to be the syntax directed editors and the

source level debuggers.
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Other observations include the realization that support for

tools which attempt to deal with system development issues must

have been considered in the design of the Ada language. Also,

the UNIX operating system is especially well structured to

support program development, system integration, and many of the

testing and management tools currently being developed for the

Ada environment.
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SECTION 9

SIMULATION AND EMULATION

!
9. SIMULATION AND EMULATIONI

This section will deal with simulation and emulation,

important techniques applicable to various stages of systems

design and development. In the context of this section,

simulation is achieved by software and is discussed as applied to

high level network design as well as hardware design. Emulation

is achieved by hardware, and is discussed as applied to the

design of processors. The use of an emulator as a debugging tool

is also suggested. Finally, the simulation and emulation of

multiple processors are presented.

9.1. Computerized Simulation Modeling

Computerized simulation modeling has proven to be an

effective tool for the analysis of complex, interactive systems

such as distributive processing systems. It has been used to

study the behavior of both existing and theoretical systems.

Simulation is basically an integrative tool for coping with the

complexity which in a distributive system stems predominantly

from interconnections and restrictions in the interconnections

among the processes.

A simulation model provides a number of benefits to a

developing software system. First of all, it permits a better

understanding of the system and the environment in which the

system operates. Initially it can play an important step in the

validation of the system requirements. By building a simulation
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model, the consistency and completeness of the system

specification can be checked. Savings in system development time

would result if errors in the specifications were detected before

the system was actually built. The detailed information needed

to completely define the system would be indicated in the

construction of the simulation model.

Secondly, it provides a framework for testing the

desirability for system modifications. A simulative model

affords the opportunity to construct ideally configured systems

and the best operating conditions on the basis of the results

obtained from the model. Modifications that perhaps lead to

better systems could be tested on the model in order to determine

their effect. A simulation model is easier to manipulate than

the actual system and thus provides a practical way to evaluate

alternative system design.

A simulation of a system atso permits control over more

sources of variation than the direct study of a system would

allow. The complex interaction of the processes can thus be

studied in detail so that possible predictions can be made about

the system in terms of time or events.

And lastly, simulation models enable an analysis of a system

to be done in a shorter period of time. All of these benefits

from models help to improve the system performance and reduce the

cost of designing and constructing the system.

Computerized simulation models fall basically into one of

two major categories. Continuous, where the interest is in

smooth changes over time in the system attributes (often
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I
characterized by sets of differential equations) and discrete,

where the cause and effect of individual discrete events are of

prime interest. In discrete models, time is advanced by either

l moving in a discrete time increment or by moving directly from

one event to the time of the next scheduled event. In a

continuous model, time is advanced in very small increments.

Basically the steps needed in developing either a continuous

or discrete modes are:

1) Definition of the system and its environment,

2) Data colLection for the system,

3) Construction of simulation programs,

4) Validation of the model,

5) Design and execution of experiments, and

6) Analysis of results.

One of the first steps in model development is the choice of a

programming language in which to code the simulation model. A

general discussion of requirements for a language used in

simulation modeling is given in the next section, followed by a

brief description and discussion of the most popular simulation

languages.

9.2. Language Requirements

The choice of an appropriate language in which to code the

simulation model is a very important one and a number of

alternatives should be considered. Simulations are often
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programmed in general purpose programming languages such as

FORTRAN, PASCAL or PL/1. However, these languages require an

intensive programming effort in order to evaluate the components

of a system and their interactions. A number of programming

languages exist for the express purpose of simulation and they

generally require less programming than the general purpose

languages. Thus the major advantage of using a simulation

language over other languages is the reduction of programming

time and effort required to program the model. The major

disadvantage is that the programmers might have to learn a new

language.

It is important to have a number of features built into the

language that are needed in the design o distributed processing

system, and these include:

1) Parallel or pseudo-parallel processing with possible

multiple activations of a given process,

2) A method of time keeping and scheduling of events or

actions,

3) A method of sharing of data and resources with the

restrictive mutual exclusion,

4) Special statistical accounting or reporting

capabilities,

5) Generation of sequences of random numbers with

various distribution,

6) Software support tools.
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Languages vary widely in the ability to provide these features.

Simulation of distributed systems are generally complex and

difficult to understand and program. There is a great need for

software support toots in the language. It is desirous to have a

language that provides for modular construction of the model. A

common principle in programming larger software systems is

decomposition of the system into a set of smaller components

which are either defined or decomposed further. Security of

information and the capability to restrict access to information

also promote the concept of modularity. A modular program is

easier to write, understand and modify. Thus, the structure in

the language that lead to modular construction of a model are

extremely important.

Good debugging tools and error diagnostics, both compile

time and execution time, are also important considerations when

choosing a language. Debugging facilities should include such

functions as setting break points, continuing with execution,

displaying execution state and modifying variables. Another

language tool that has recently been receiving attention is that

of documentation. There is a need for some documentation tools

(forced documentation being an ideal). An interactive language

also has some distinct advantages, such as flexibility and

greater user control but there are also some disadvantages, such

as execution cost.

j Thus, there are many language features to consider when

choosing a simulation language. However, the decision as to

j which programming Language to choose also depends on other

factors such as

1
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i) language avaiLabiLity,

(ii) language adequately supported,

(iii) cost to obtain, install and update language,

(iv) difficulty in learning language and

(v) execution time efficiency

Simulation languages vary greatly in the capabilities they

include. A discussion of the 4 most popular simulation languages

follows. These languages were chosen because they have been used

in many simulation models, they are generally available, and they

do provide many of the desirable features. Each has certain

strengths and weaknesses when considering a distributed

processing system. j

9.3. Simulation Languages

Due to the reduced programming effort on using simulation

languages, general purpose languages will not be considered.

Languages used for both continuous modeling and discrete modeling

are included. The discrete languages themselves are divided into

flow-chart oriented and statement-oriented languages. In the

first case, the user defines flow chart blocks and then converts

them into a program structure. The statement-oriented languages

use program statements to define conditions that must appy

before certain actions can take place.
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9.3.1. GASP IV [Pritsker 74]

GASP IV is a Fortran-based simulation language which can be

used in simulation studies of discrete, continuous and combined

systems. It provides a user with a collection of FORTRAN

programs that perform functions useful in a simulation setting

such as program monitoring, error reporting, data collection,

time advancement and random number generators.

A statement-oriented language, the basic entities of GASP

are events. A GASP program consists of two parts: a user part

and a GASP part. The user part contains subprograms for

initialization, definitions for state variables, event code

definitions, condition defining events and event processing. The

GASP port contains subprograms that provide for such facilities

as the execution controller, data and event initialization, data

storage and retrieval, statistics and error reporting.

There are two different kinds of events in GASP. One is

time-event and the other is state-event. Time events are those

which occur at a particular time in the simulation. Those which

occur when the system reaches some particular state are called

state-events.

GASP is a fairly efficient language. However, being

Fortran-based, it does not provide features particularly viable

for modularity. The underlying storage management scheme in GASP

is fixed which means that all storage for the system must be

allocated at the beginning of the execution. This is a severe

restriction when modeling a large complex system which is by

nature dynamic and in which the number of possible events are not
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predetermined.

9.3.2. GPSS [Gordon 78]

Unlike most of the other simulation languages, GPSS programs

are based on a block diagram drawn by the user to represent the

system to be simulated. It is then both a language and a

computer program. The language is used to describe the model and

the computer program is designed to accept a model described in

the language and simulate the system being modeled.

GPSS has a process oriented viewpoint. Its design is based

on the fundamental assumption that most systems can be simulated

adequately using just the entities transactions, equipment (acted

upon by the entities), and blocks which specify the logic of the

system. Other elements are provided for statistical measurement.

A user of GPSS defines the components of the system in terms of

the entities and tranfers a flow chart representation of a

dynamic system into the GPSS Block Diagram. The Block Diagram is

used to route transactions as they move through the model. The

concept of time-control is also built into the GPSS system.

GPSS does have fairly good debugging tools and tracing

facilities. The overlying storage management scheme is dynamic

which permits storage to be allocated when needed and reclaimed

when it is no longer needed.

The most significant disadvantage is the cost of executing a

GPSS program. As it is an interpretive system, the cost is

fairly expensive. GPSS appears to be easier to learn than most

statement-oriented languages, but it is less flexible. The more

complex the model being simulated , the more difficult it is to
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represent it using a Slock Diagram. This is particularly true

when there are complex interactions among the components. Thus,

it appears to be more difficult to program complex systems in

GPSS. Another disadvantage is that relative large amounts of

memory space is needed for running a program in the Dec-10

implementation, even the most trivial kind of program needs about

20k.

9.3.3. SIMSC'IOT [Diviat 68]

SIMSCRIPT is a Fortran-based, computer language speciaLly

designed for use in simulation. It is a statement-oriented

language based on the concept that a simulation system can be

descibed by a series of entities which have attributes and the

owner-member set. The status of the simulated system is modified

through the execution of events. Each event is a SIMSCRIPT

routine which simulates the activities of the system. There is a

timing routine which keeps track of a system clock. A priority

ranking also is available.

The underlying storage management scheme is dynamic so

storage can be allocated and reclaimed as needed. It is a fairly

efficient language. However, due to being Fortran-based, good

modular structures are absent in the language.

9.3.4. SIMULA-67 [Dah168] SIMULA-67 [Dahl68]

SIMULA-67 is an Algol-based discrete simulation language

which extends Algol to include the concept of a collection of

programs called processes conceptually operating in parallel.

The concept of a process is derived from the class structure

j which is a coroutine control structure. Processes can be
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inserted and removed from an event-time aueue. A process U
possesses its own local data. A process can be in one of four 3
possibLe states: active, scheduled, suspended and terminated. A

user can activate a process directLy or place it on the time

event list which would then activate the process at a time

determined when the process was put on the list. SIMULA is

capable of handling a number of systems executing logically in

parallel.

SIMULA does provide good facilities for modular program

development. Modules in SIMULA can be procedures, functions,

classes, blocks or processes. A class oliect can act as a data

abstraction facility without the ability to monitor use. The

DEC-10 implementation of SIMULA has the concepts of "virtual" and

"hidden" variables which are in the modular construction of the

model.

An interactive debugger SIMDDT is available and can provide

such functions as break points, modification of variable values,

display of execution after a break point.

It is a powerfuL language that is somewhat difficult for a

novice programmer to learn. The SIMULA compiler is a large piece

of software that needs 24k to execute on the DEC-10 system.

Because of the structuring facilities in the language,

programs writter in SIMULA are clear and fairly easy to

understand and thus modify.
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U9.4. Simulation Modeling Verification
Regardless of the language chosen in which to code the

model, the next very important step after the model construction

is the verification of the model. Verification of the simulation

program involves ensuring that the computer program correctly

represents the intended model. There are really two parts to

ensuring that the program is a correct representation: that of

verification which seeks to show that the computer program

performs as expected and validation which attempts to estahlish

that the model behavior validly represents the system being

simulated. The verification and validation of a model are

crucial but difficult tasks often requiring compromises.

The best way to validate a simulation model is to compare

the results of the model with the results of the real system

under the same conditions. The resuLts of the simulation model

should be compared statistically with the results of the actual

system to test for significance. Reproducibility should also be

shown if possible. However reproducibility is sometimes

difficult due to the statisical nature of inputs to the model.

The next best way to validate the model is to compare the

results with historical data collected from the active system

that was run under similar conditions. If this is not available,

validation of the model by experts in the field will increase the

credibility of the model.

Traditional tools for the verification of a program usually

consists of run-time error messages and debugging facilities

including such features as traces and dumps. Some advances have
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been made in formal proofs of correctness to verify a program.

However, because simulation applications are typically large with I
complex interactives, it appears doubtful that formal techniques

have much applicability in simulation program verification.

Although not guaranteeing absoLute proof of correctness, complete

testing of the program aids in the verification. It is

recommended that a test plan and test data be chosen and

specified during the design state, thus ensuring that the tests

are based on system specifications rather than code. Another

approach which can be used in establishing the reliability of

programs is to divide the testing phase into two parts: module or

unit testing where each module is exercised alone and integrative

testing where the individually tested modules are merged and

tested as a whole. Thus, through program traces, debugging and

testing as well as using structured top-drawn design in the

construction of a program, verification can be approached.

9.5. Summary

Simulation modeling plays an important role in the analysis

of large, complex systems. Simulation modeling leads to improved

system understanding and also indicates the amount of detail

actually needed to study the system. It expedites the speed with

which behavior of a system can be analyzed. It provides a

framework for seeking to improve the performance of a system by

various modifications in the design. A simulation model is less

costly to build and permits more control over components than the

actual system.

The chore of the programming language for the model is an

important one. We surveyed 4 widely used simulation languages
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which can be used to model distributed processing systems. Thus

I basically all had the concept of time control and logical

parallelism. None had mutual exclusion built in as a feature and

Ithus the model builder would have to provide this feature. The

amount of debugging tools varies among the languages and their

implementation. None of the languages had any good documentation

features.A

Because of its features for writing modular programs and the

easily understandable language concepts, SIMULA 67 is the

recommended language to use in modeling distributed procesing

systems. It is believed that the complex interactions among

processes can be be described in SIMULA.

Certainly an important part of any simulation model is the

validation and verification of the model. Techniques such as

comparison of results obtained form the simulation model with

actual results should be used to help validate the model.

Systematic and modular construction will aid in the verification.
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9.6. Emulation

The most obvious use of emulation is to provide the

capability of developing software for a target processor

concurrently with or before the development of the processor. It

is assumed, of course, that the processor is completed specified

at the functional or register transfer level so that the

instruction set available to the programmer is defined.

Concurrent development of hardware and software is important

in distributed systems. The 'software first' approach was

adequately demonstrated by the experience of the Martin Marietta

Viking Lander Flight System [Wachs 78]. The QM-1 was used to

emulate the flight computer which was delivered two months before

launch while the actual real-time flight program was developed

one year ahead of computer delivery.

9.6.1. The QM-1 Universal Emulator

The QM-I universal emulator is a computer manufactured by

Nanodata Corporation in Buffalo, NY. Unlike most other mainframe

computers manufactured by corporations such as Digital, IBM, and

Perkin Elmer, the QM-1 is designed solely to act as a chameleon -

to mimic, (or emulate) the functions of other computers. It is an

extremely flexible tool, and can emulate any processor previously

or currently built, and can probably emulate anything that can be

developed in the next few years. Since the GM-I is not a

simulator (that is, one computer programmed to act like another),

but is instead an emulator (a computer whose hardware is

dynamically modified to be another), the QM-I is a very fast

processor. Current simulators run 5,000 to 100,000 times slower
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than the machine they are simulating. The IM-1 emulator runs onty

2 to 100 times slower than the machine it is emulating.

j Programming the QM-1 entaiLs writing an instruction

decoder/interpreter in microcode, or if one is willing to

sacrifice ease of programming for speed, one can program the GM-i

in a much lower level nanocode. If one takes this latter course,

the QM-1 must be used in standalone mode. Debugging the nanocode

requires hands-on contact with the machine. If microcode alone is

to be used, the GM-1 can be used in standaLone mode, with its own

disk, card reader, terminal and line printer, or it can be

configured as a peripheral to another system through the use of a

special interface board. If it is used as a peripheral (as has

already been done with the DEC system-20), the QM-1 uses the

terminals, disk storage, line printers, and terminals of the host

machine, reducing the cost outlay required to get the initial

system online.

Since the QM-1 essentially emulates an instruction set, it

can be used as a fast back end of a simulator. One example of

this is a P-machine. Currently, most PASCAL compilers generate

P-Code, instead of generating directly executable machine

instructions. There is then a second program which simulates the

actions of the P-machine and executes the P-Code. This makes

PASCAL an effectively interpreted language, which is

correspondingly slower than a directly executed machine. The GM-i

can be programmed to emulate the actions of the P-machine, and

execute PASCAL code at a much greater speed.

I A second example is with ISPS CBarbacci 77). Currently the

ISPS simulator programs generate and execute RTM-code, for a
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mythical RTM (Register Transfer Machine). This RrM is well suited

for simulating arbitrary hardware systems, but it is simply a

simulation itself in the current state. The GM-1 can be

programmed to emulate the actions of the RTM, and execute ISPS

descriptions at a much higher speed than is currently obtainable.

A system similar to the ISPS system has been developed by

USC/ISI for the SMITE computer description language. This system

utilizes the QM-1 as a peripheral device to a DEC system-20,

permitting multiple users to run SMITE emulations. The SMITE

compiler generates code which is directly executable on the QM-1

system for fast emulation of target architectures.

9.6.2. Emulation As a Debugging Tool

Besides improvement of several orders of magnitude in steed,

emulating a proposed machine architecture described in a language

such as ISPS or SMITE can be an effective debugging tool. The

functions normally provided by a simulator, such as break points

and tracing can now be provided by emulation and will therefore

execute faster.

Another reason for the importance of this approach is that

some target machines, even when available, may be incapable of

supporting software development because of the following factors.

1) rapid proliferation of small or speciaL purpose

computers;

2) lack of raw power or memory;

3) lack of suitable peripherals;
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4) Lack of software support.I

Emulation with debugging facilities then provides an effective

way of developing software for such target processors regardless

of whether they are available or not.I
The benefits of providing debugging functions by emulation

J have been illustrated by experiences at Dahlgren Laboratory

EFlink 75]. The QM-1 was used to emulate the Trident submarine

I processor of the order of complexity as the IBM 360. The

1 emulation software required 8 - 11 K of control store, and 256 -

512 words of nanostore. The effort took 24 man-months, with

three programmers experienced in QM-1 and three who had only

cursory knowledge of QM-I.

9.7. MMPS simulator system

While there exist a great many design and debugging tools

for uni-processor systems, such as simulator systems, as welL as

off-the-shelf in-circuit emulators for almost any microprocessor

on the market, there exist few real design or debugging tools for

multi-processing systems. While it is relatively easy to simulate

any uni-process machine on almost any other, there is no easy

method of simulating the actions of multiple processors. And

while it is possible to hand code a multi-processor simulator,

this is certainly not a desirable method. Any design

modifications must be incorporated into the current simulator by

reprogramming (possibly large) sections of the code. A network

simulator cannot limit itself to the simulation of a specific

I network, with fixed characteristics and configurations. Rather,

what is needed is a software system development tool which is a
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general purpose network simulation package to provide a

simulation environment for the design, checkout, and maintenance

of multiprocessor computer networks.

What we have set out to do is to construct tools for the

network designer. A multi-microprocessor design language and

dynamically reconfigurable multi-microprocessor simulator (MMPS)

[KLein 79) provides an aid to an efficient design methodology.

The simulator will have the capability to provide both

hardware and software level breakpoint tracing, as well as a

static method of tracing the overall system performance, for

later evaluation and possible redesign. This systems is being

written under the UNIX operating system, and requires the multi-

process and inter-process communications features provided by

UNIX. Other possible operating systems which could support MMPS

implementations are VAX-VMS, VAX-UNIX, and TOPS-20 for the DEC

system-20.

9.8. Emulation of Multiple Processors

While MMPS simulates multiple processor architecture, there

is still a lack of tools that can emulate multiple processors.

The BUCS system at Mellon Institute, Carnegie Mellon University

(CMU) is a reconfigurable emulation system for multiple

processors. BUCS-I [McConnell 79] allows software to dynamically

change interconnections among microcomputer to evaluate or verify

design and algorithms. Despite the importance of the concept,

the first prototype implemented is modest in processing power and

cannot meet the needs of an application such as BMD as a

production tool. Rome Air Development Center (RADC) has designed
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Multiple Micro-processor System (MMS) as part of their system

architecture evaluation facility which is the result of a ten-

year continuing effort. MMS has not yet been implemented. E. D.

j IJensen has also proposed to build a multiple processor emulation

facility at CMU. This effort is a sizable one, and will not be

available before three years [Jensen 80).

The need for such emulation in the BMD application is not

clear at this point. Simulating networks aspects of a system

with simulation Languages or an approach such as MMPS may

suffice.
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SECTION 10

A BMD DDP SOFTWARE DEVELOPMENT FACILITY

10. A BMD DDP SOFTWARE DEVELOPMENT FACILITY

Based on work done so far in analyzing BMD DDP needs in the

few areas selected for study, a BMD DDP software development

facility is partially defined in terms of both the software and

hardware capabilities (see explanations in Section 2). Figure 5

gives an overview of this first-cut definition. Each logical

module is briefly discussed.

Emulator

An emulation processor will be microcoded to emulate

hardware description language (ISPS or SMITE) representations

efficiently. Debugging facilities will also be provided by

microcode in the emulation software. This provides a flexible

way of achieving emulation of an unknown target processor. When

a target processor is selected, it needs only be described in the

hardware description language to be emulated, and software for it

can be developed. Assuming that a hardware description language

is used to describe the hardware during design, emulation can

take place almost immediately after the choice of a processor is

made. In the conventional approach, the microcode for emulation

as well as debugging has to be developed after the processor is

selected. This proposed emulation facility will also provide a

means of checking out the design of a candidate target processor.
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DEVELOPMENT PROCESSOR

TARGET Multi-user operating system TERMINALS

PROCESSOR MMPS

Design specification

Design language

Si mu L a

Design Analyzers

Simulators

Evaluation Tools

Ada Compiler OTHER

Programing Support Tools

Text editor PERIPHERALS

linkage editor

system composition

program support library

documentation

Testing tools

Verification tools

Q-Prim-Like Interface

EMULATOR (QM-i)

Microcode for ISPS/SMITE execution

Microcode to provide debugging functions

FigureS. A BMD DDP Software Development Facility.

11



I
The QM-1 seems to be the only general purpose emulation

machine available at the moment that has the power and

established user-experience to warrant consideration. The other

small-scale microcodable machines can be used as emulators but

will not be able to provide the debugging environment so critical

to software development.

Q-Prim-like Interface

To use the QM-1 in a stand-alone mode has two disadvantages

for software development. First, peripherals will have to be

acquired for it. This would mean higher cost, and probably

duplication of peripheral between the emulation processor and the

general purpose development processor. Second, processing has to

be physically moved from one machine to the other, leading to

fragmented capabilities not convenient for the user. A good

development facility should provide an integrated set of tools

with easy access to the user and easy transition from one tool to

another.

It is proposed therefore that a QM-1 be connected to the

main processor. There exists now a Q-Prim package that would

allow a QM-1 to appear as a peripheral to the DEC-10 or DEC-20.

If another processor is chosen for the development facility, Q-

Prim has to be adapted.

Development Processor

This is the main processor in the development facility,

supporting the tools specified in Sections 6, 7, 8, and 9.

Promising candidates seem to be PDP/11, DEC-10 or -20, and VAX.

PDP/11 is widely used but is comparatively more modest in
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processing power than the other two. DEC-10 and -20 are

efficient general purpose processors, well-established, and more

cost-effective than the IBM 360/370 series, and can support the

existing Q-Prim package, Simula, as well as the Air Force Ada

compiler to be developed. The VAX is a newer machine, with a

large instruction set, good addressing space and processing

power. Most of the PDP-11 tools, though, should be easily

adapted for execution on the VAX. It can also support the first

full-scale Ada compiler contracted by the Army to be completed in

1982.

Choice of an operating system for the development

environment depends on several factors, some of which have been

discussed previously. More important considerations are that it

has to support multiple users, linkage of modules compiled from

different programming languages, and the MMPS (Multiple

Microprocessor Simulation) concept. A multiple-user time-shared

system, with a QM-I as a peripheral, will also allow the

emulation capabilities on the QM-1 to be time-shared among

multiple users. On the PDP-11, either RSTS or the recently

released RT-11 version 4 will support multiple users. UNIX has

many good features and runs on the PDP-11 but is not commercially

supported to the extent of wide-spread use. DEC-20 has the

TOPS-20 operating system which supports multiple users, so does

VMS on the VAX.

The ratio of using one QM-1 to one general purpose processor

is not fixed. If the nature of the workload during development

justifies a different mix, two QM-ls may be used as peripherals

to one development processor or vice versa. However, both o'
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these choices require a more complicated physical connection as

well as a more complicated operating system to control. The

effort and lead-time required to development software for control

may not be cost effective in terms of money and time.

Terminals

Terminals are required to permit many programmers to share

the processors interactively. An interactive environment is

desirable for faster and more flexible user control. The number

of terminals is yet to be determined. Based on the assumption

that the BfD DDP subsystem is comparable to a one million Fortran

instruction effort, (about 60 programmer-yrs), to be developed in

two years or so, a minimum of 30 terminals are required. In

addition, graphics terminals may be required to support design

tools. Intelligent terminals can also be considered to relieve

the main processor of some Local functions such as editing. The

number of users to be supported at one time may overload the main

processor. In that case, the development facility can be

replicated. The additional cost is not out of hand because the

development facility is not duplicated as many times as the

target processor (over 200). Furthermore, repLication also

ji provides back-up for reliability.

Interface With Target Processor

Some development facilities have a link available for

connecting the target processor when it is delivered. This

provides a means of down-loading programs already developed from

the main processor to the target processor. It also minimizes

the software needed to test the target processor.

1



Other Peripherals

PeripheraLs such as disks, printers, wiLL also be necessary.

The number of peripherals required should be investigated

according to BMD needs.
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APPENDIX A

I CONCURRENCY IN FAST FOURIER TRANSFORMS

11. APPENDIX A: CONCURRENCY IN FAST FOURIER TRANSFORMS

ReaL-time processing has Long been an objective in the area

of signaL and image processing EarLier real time systems were

mainLy anaLog signaL/image processing systems. Efforts in

achieving reaL-time operation using digitaL processors were

greatly aided by the Fast Fourier Transform (FFT) algorithm.

However, at the present time, reaL-time digitaL signaL/Image

processing objectives are stilL unreaLized with a sequentiaL

'i uni-processor, unless tradeoffs are made by using small sample

sizes or using special-purpose hardware.

In general, it can be said that there are 5 general

I structural factors that affect the processing speed as well as

-its cost-effectiveness. They are:

(1) Hardware technology

(2) ALgorithm

(3) Data size and structure

1(4) Programming Language

1 (5) Architecture

3 While a great deal of efforts have been made in the

uniprocessor regarding these factors, advances in technoLohy,

I muLti-procellor and concurrent programming Language wilL make it

possible to increase the processing throughput. In illustrating
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the potential, we will use the FFT algorithm, which is a

fundamental tool in the digital signal/image processing area, to

demonstrate how a concurrent programming language may be used.

The evaluation of complex Fourier coefficients in the

frequency domain is a fundamental task in the digital signal and

image processing. It has been a subject of intensive activity

during the past fifteen years. The principle of the algorithm is

well documented in most of the standard text dealing with system

theory, circuit analysis, signal or image processing or

communication theory. 8-point FFT algorithms using a signal flow

graph can be found in chapter 6 of "DigitaL Signal Processing" by

Oppenheim and Schafer, Prentice-Hall. signal flow graph.

In general, FFT consists of M stages of N/2 butterflies

where Nunumber of samples and M=log1 N, and each butterfly

operation may be described by the well-known butterfly equation:

X'(j) * X(j) + W(n) * X k)

X'(k) = X(j) - W(n) * X(k)

Thus a digital processor is mainly concerned with two tasks:

(1) complex arithmetic operation and

(2) indexing and control.

Concurrency of operation may be explored at different

levels:

(1) AlLow concurrent operations within each butterfly,

but butterflies will be operated sequentially.
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(2) If M hardware-butterflies N processors are

J available, the algorithm may be implemented by a

horizontal pipeline. In such a pipeline, each

processor will sequentially compute N/2 butterflies,

and then passes the results to the next stage and

ready to accept data from a previous stage

processor.

(3) If (N/2) processors or hardware butterflies are

available, all (N/2) butterflies in one stage will

be done concurrently. The array results will then

be passed onto the input side of the same (N/2)

butterflies to achieve a pipeline effect by

software.

(4) If there are M.N processors or hardware butterflies

available, the entire array may be processed through

a hardware pipeline. The throughput rate would then

be equal to the input rate.
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12. APPENDIX B: HOL FOR OPERATING SYSTEMS

Operating system programs are generaLLy the most frequentLy

j executed programs in a computer instaLLation. They must be

designed and impLemented in such a way that their demands on

I. system resources, notabLy time and space, are minimized.

Because of the greater efficiency of machine Level Languages

in computer resource utiLization, most system programming has

been done in machine LeveL Language. However, personneL costs

are becoming the dominant cost component in computing, and this

trend is Likely to continue. It is expected that hardware costs

wilL decline at an average rate of 15% per year. PersonneL

reLated costs are expected to increase at an average rate of 4%

per year CEmery 78].

In 1972, a Rand Corporation study forecasted that by L985

software wiLL consume 95Z of our defense computer system doLLars.

(LiebLein and Martin 793. As hardware cost becomes smalLer, the

rate of increase of totaL cost begins to approach the rate of

increase of personneL cost. In other words, it may be cheaper to

buy more memory and program system components in high LeveL

Languages.

Fosdick CSigpLan Notices July L9793 presented a good

j historical overview of the use of high-Level Languages for

operating systems deveLopment. He points out that it was CWirth,

L L9683 who started the movement towards using higher Level
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Languages for OS programming with his report on PL360. PL360 is

a high-level assembly Language for the IBM series 360 computers.

ALthough most system programming applications have been and still

are implemented in the assembly language of the machine, the

following are examples of exceptions to this practice.

1) PL/I was used to construct the MULTICS ECorbato]

operating system wich was designed at the Massachusetts

Institute of Technology in the mid-sixties. MULTICS had

as one of its design techniques the use of a high level

language for all machine independent functions,

2) C, a compact high Level language which includes

primitives to take advantage of hardware features, was

used to write the UNIX [Ritchie and Thompson, 743

operating system developed at BeLL Laboratories. UNIX

has been implemented of the PDP-11/40 and several other

small machines.

3) SAL CTanenbaum, 743 a typeless GOTO-less language

intended for system programming, was used to construct a

general purpose time sharing system for the PDP-11/45.

4) BLISS CWulf) was developed at Carnegie Mellon University.

It was designed for developing operating systems for the

DEC-10 machine.

5) TOOPS CCzarnlk et al., 733 is the language used to write

several versions of the SUE operating system.

6) Concurrent Pascal [arlnch Hansen, 781, an extension of

sequential Pascal, has been used to write the Solo

operating system and several other small operating

systems.

In order to take advantage of the proliferation of
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I
asynchronous hardware components available in most modern

I computer installations, an operating sustem must be a very

"special" piece of code. It must be capable of handling some

I complicated conditions. But like any program, the cost of

developing and maintaining an operating system is directly

related to the size, complexity, and sophistication of the

I operating system. As operating systems became Larger and more

complex, it became cost effective to develop these programs in a

high level Language. However, the designer of a high Level

language for writing operating and other real-time control

systems must resolve a multitude of complex issues. The goals

inherent in the design of a complex real-time control system are

often in direct conflict with the goals inherent in the design of

a good high level language.
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